List of Scientific Calculation and Simulation Software products
- classification:Scientific Calculation and Simulation Software
91~135 item / All 1260 items
Collection of case studies on architecture and structural analysis!! There are various examples, so please take a look!!!
- Scientific Calculation and Simulation Software
A collection of analysis examples related to railways and shipping! There are various cases, so please take a look.
- Scientific Calculation and Simulation Software
Collection of case studies related to electricity and electronics!! There are various examples, so please take a look!!!
- Scientific Calculation and Simulation Software
Reduction of analysis costs, enhancement of information security!!!
- Scientific Calculation and Simulation Software
[Trial in Progress] Thermal Fluid Analysis Tool for Designers
- Scientific Calculation and Simulation Software
Nonlinear propagation control technology considering the interaction of ultrasound - Optimization technology for ultrasound -
- Other measuring instruments
- Scientific Calculation and Simulation Software
- others

Function generator oscillation of ultrasonic transducer.
The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to the propagation state of ultrasound to publish technology that relaxes the surface residual stress of ultrasonic transducers using ultrasound and fine bubbles. This technology for relaxing surface residual stress has made it possible to improve fatigue strength against metal fatigue. As a result, the effects on various components, including ultrasonic tanks, have been demonstrated. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator Measurement Equipment: Example - Oscilloscope By controlling oscillation, we achieve propagation states tailored to the objectives regarding sound pressure level, frequency, and dynamic characteristics. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing

Ultrasonic probe sweep oscillation technology - Oscillation control of low-frequency resonance phenomena and high-frequency nonlinear phenomena.
The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to optimize the nonlinear vibration phenomenon of surface acoustic waves through oscillation control technology based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. Note 1: Original nonlinear resonance phenomenon The resonance phenomenon of ultrasonic vibrations occurs due to the generation of harmonics resulting from original oscillation control of ultrasonic waves, which achieves high amplitude through resonance. The key point is the optimization of the ultrasonic propagation section. Note 2: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Technology for setting oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the ultrasonic propagation characteristics of the device/equipment. 2) Setting of sweep conditions corresponding to the ultrasonic propagation characteristics of the device/equipment. 3) Setting of output levels corresponding to the ultrasonic propagation characteristics of the device/equipment. 4) Adjustment of various interactions corresponding to the ultrasonic propagation characteristics of the device/equipment.
Optimization of Cleaning with Ultrasonic Waves and Fine Bubbles (Microbubbles) for Specific Purposes
- others
- Scientific Calculation and Simulation Software
- Non-destructive testing

Function generator oscillation of ultrasonic transducer.
The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to the propagation state of ultrasound to publish technology that relaxes the surface residual stress of ultrasonic transducers using ultrasound and fine bubbles. This technology for relaxing surface residual stress has made it possible to improve fatigue strength against metal fatigue. As a result, the effects on various components, including ultrasonic tanks, have been demonstrated. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator Measurement Equipment: Example - Oscilloscope By controlling oscillation, we achieve propagation states tailored to the objectives regarding sound pressure level, frequency, and dynamic characteristics. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
It is possible to carry out the production of the substrate from the layout with the expected yield at an appropriate cost!
- Scientific Calculation and Simulation Software
Ultrasonic cleaning machine using a degassed fine bubble (microbubble) generation liquid circulation device.
- Scientific Calculation and Simulation Software

Function generator oscillation of ultrasonic transducer.
The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to the propagation state of ultrasound to publish technology that relaxes the surface residual stress of ultrasonic transducers using ultrasound and fine bubbles. This technology for relaxing surface residual stress has made it possible to improve fatigue strength against metal fatigue. As a result, the effects on various components, including ultrasonic tanks, have been demonstrated. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator Measurement Equipment: Example - Oscilloscope By controlling oscillation, we achieve propagation states tailored to the objectives regarding sound pressure level, frequency, and dynamic characteristics. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Surface treatment technology using a megahertz ultrasonic oscillation control probe -- Improvement treatment of metal fatigue strength (relaxation and uniformization of surface residual stress) --
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others

Ultrasonic control technology applying mathematical theories of communication - Dynamic control model of ultrasound -
The Ultrasonic System Research Institute has developed ultrasonic control technology by applying the "Mathematical Theory of Communication" (Claude E. Shannon) to ultrasound. The developed technology utilizes ultrasonic sound pressure measurement, analysis, and evaluation techniques to adapt the propagation characteristics of ultrasound (dynamic characteristics) to the ensemble (entropy) of communication theory. Unlike the previous "technical problems" related to communication, this was developed as a technical application research addressing the "semantic problems" and "effect problems" related to ultrasonic phenomena. Furthermore, through the "evaluation technology for ultrasonic devices" at the Ultrasonic System Research Institute, concrete results using this method have been confirmed. For more details, we are responding and expanding this as a consulting business.
To stabilize the effects of ultrasound, a statistical perspective is essential.
- Scientific Calculation and Simulation Software
- Non-destructive testing
- Other analytical equipment

Ultrasonic control technology applying mathematical theories of communication - Dynamic control model of ultrasound -
The Ultrasonic System Research Institute has developed ultrasonic control technology by applying the "Mathematical Theory of Communication" (Claude E. Shannon) to ultrasound. The developed technology utilizes ultrasonic sound pressure measurement, analysis, and evaluation techniques to adapt the propagation characteristics of ultrasound (dynamic characteristics) to the ensemble (entropy) of communication theory. Unlike the previous "technical problems" related to communication, this was developed as a technical application research addressing the "semantic problems" and "effect problems" related to ultrasonic phenomena. Furthermore, through the "evaluation technology for ultrasonic devices" at the Ultrasonic System Research Institute, concrete results using this method have been confirmed. For more details, we are responding and expanding this as a consulting business.
Ultrasonic oscillation control probe enabling control of resonance phenomena and nonlinear phenomena - Surface modification technology (relaxation of surface residual stress) through nonlinear oscilla...
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)
The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.
Vibration measurement device using ultrasonic waves - Application of megahertz ultrasonic oscillation control technology -
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Improvement of the ultrasonic cleaning machine (addition of fine bubble generation system for on-site support) - megahertz flow-type ultrasonic using degassed fine bubble generation liquid circulation.
Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, utilizing measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system. To utilize (control) the complex and changing conditions of ultrasound in a stable manner according to the purpose, we offer on-site services to add, install, and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. <Example> *Month* *Day* - Consultation and confirmation via email *Month* *Day* 13:00 - 13:30 - Greetings and meeting 13:30 - 16:30 - Confirmation (simple sound pressure measurement) Setting up the degassing fine bubble generation liquid circulation system Operation explanation Confirmation (sound pressure measurement) 16:30 - 17:00 - Discussion based on sound pressure data 17:00 - 18:00 - Reserve A simple analysis of the measurement data will be conducted. A report including the analysis results of the sound pressure data will be submitted one week later.
Plating method using ultrasound and fine bubbles
- Scientific Calculation and Simulation Software
- others
- Non-destructive testing

Ultrasonic probe using a component with iron plating on polyimide film (technology utilizing ultrasonic propagation characteristics of iron plating)
The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe using components coated with iron on polyimide film. By applying this technology, we provide consulting services for "ultrasonic and vibration measurement, propagation control..." for various curved surfaces. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicon, Teflon, glass... Oscillation Equipment Example: Function Generator By understanding the acoustic characteristics of the target object and installation conditions, we have achieved dynamic control of surface elastic waves (propagation state). We realize propagation states tailored to various purposes (cleaning, stirring, etc.). Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Introducing a successful case of streamlining and shortening the development of high-performance elastomer seals using AI predictions! Minimizing the processes necessary to achieve development goals!
- Scientific Calculation and Simulation Software
Control technology for acoustic flow (nonlinear phenomena) based on sound pressure measurement analysis.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Improvement of the ultrasonic cleaning machine (addition of fine bubble generation system for on-site support) - megahertz flow-type ultrasonic using degassed fine bubble generation liquid circulation.
Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, utilizing measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system. To utilize (control) the complex and changing conditions of ultrasound in a stable manner according to the purpose, we offer on-site services to add, install, and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. <Example> *Month* *Day* - Consultation and confirmation via email *Month* *Day* 13:00 - 13:30 - Greetings and meeting 13:30 - 16:30 - Confirmation (simple sound pressure measurement) Setting up the degassing fine bubble generation liquid circulation system Operation explanation Confirmation (sound pressure measurement) 16:30 - 17:00 - Discussion based on sound pressure data 17:00 - 18:00 - Reserve A simple analysis of the measurement data will be conducted. A report including the analysis results of the sound pressure data will be submitted one week later.
Proposal for a cleaning method optimized with fine bubbles and megahertz ultrasonic waves.
- others
- Non-destructive testing
- Scientific Calculation and Simulation Software

Improvement of the ultrasonic cleaning machine (addition of fine bubble generation system for on-site support) - megahertz flow-type ultrasonic using degassed fine bubble generation liquid circulation.
Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, utilizing measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system. To utilize (control) the complex and changing conditions of ultrasound in a stable manner according to the purpose, we offer on-site services to add, install, and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. <Example> *Month* *Day* - Consultation and confirmation via email *Month* *Day* 13:00 - 13:30 - Greetings and meeting 13:30 - 16:30 - Confirmation (simple sound pressure measurement) Setting up the degassing fine bubble generation liquid circulation system Operation explanation Confirmation (sound pressure measurement) 16:30 - 17:00 - Discussion based on sound pressure data 17:00 - 18:00 - Reserve A simple analysis of the measurement data will be conducted. A report including the analysis results of the sound pressure data will be submitted one week later.
Utilizing nonlinear phenomena related to megahertz ultrasonic propagation states.
- Analysis and prediction system
- Other measuring instruments
- Scientific Calculation and Simulation Software

Ultrasound, Fine Bubbles, and Surface Elastic Waves - Surface Treatment Technology -
The Ultrasonic System Research Institute has developed (and published) technology to control the propagation phenomena of megahertz ultrasonic waves using ultrasound and fine bubbles/microbubbles and surface elastic waves. By optimizing the acoustic properties of surface elastic waves (in resin, steel, stainless steel, glass, ceramics, etc.) for the technology that alleviates surface residual stress using ultrasound and fine bubbles/microbubbles, we have developed methods for utilizing ultrasound tailored to specific purposes. In particular, there has been an increase in achievements related to ultrasonic cleaning, plating treatment, and the homogenization effect of liquids. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment Example: Function Generator Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Application of technology to control the interaction between ultrasound and water tanks.
- Scientific Calculation and Simulation Software
- Non-destructive testing
- others

Ultrasonic oscillation control probe using a stainless steel vacuum double-walled container.
Technology for Manufacturing Ultrasonic Oscillation Control Probes in Megahertz -- Consulting Support for Manufacturing Know-How -- The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states above 900 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (verification of sound pressure data analysis) - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, and glass, we achieve propagation states tailored to specific purposes regarding sound pressure levels, frequency, and dynamic characteristics through oscillation control.
Further improvement in ensuring safety at manufacturing sites! Recreating accidents caused by being caught or entangled using VR! Labor accident simulation VR system.
- Scientific Calculation and Simulation Software
If there are earthquake motion records, a realistic VR earthquake experience tailored to the building and its height is possible!
- VR/AR
- Scientific Calculation and Simulation Software

The "Earthquake Zabuton" exhibited at the 11th Earthquake Disaster Prevention Technology Exhibition in Osaka was featured on MBS NEWS.
The "Earthquake Zabuton" exhibited at the 11th Earthquake Disaster Prevention Technology Exhibition in Osaka was featured on MBS NEWS.
Cutting-edge real-time 3D DX/simulation/digital twin platform!
- Scientific Calculation and Simulation Software
Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)
The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.
Nonlinear control technology for ultrasound based on sound pressure measurement analysis.
- Scientific Calculation and Simulation Software
- Other measuring instruments
- Non-destructive testing

Optimization technology related to the combination of sound and ultrasound.
The Ultrasonic System Research Institute has developed the following technologies: * Measurement technology for ultrasonic propagation conditions (Original product: Ultrasonic Tester) * Analysis and evaluation technology for ultrasonic propagation conditions (Nonlinear analysis system for time-series data) * Dynamic control technology for ultrasonic propagation conditions (Analysis technology for the interaction between sound and ultrasound) * Control technology for the generation of surface elastic waves (Manufacturing technology for ultrasonic oscillation control probes) .... Using the above technologies, we have developed optimization technology related to the combination of sound and ultrasound. We optimize and apply dynamic nonlinear vibration phenomena (Note) resulting from the combination of sound and ultrasound according to the intended purpose. Note: Original nonlinear resonance phenomenon This phenomenon occurs due to the generation of harmonics through original oscillation control, realized at high amplitudes by resonance phenomena, and is evaluated as a resonance phenomenon of ultrasonic vibrations. As an application example of this technology, we have achieved effective utilization of ultrasound (cleaning, modification, stirring, chemical reaction promotion, etc.) tailored to the conditions of various parts and materials (in air, underwater, in contact with elastic bodies, etc.).
Development technology for ultrasonic probes and ultrasonic oscillation control systems - Aging treatment of piezoelectric elements.
- Scientific Calculation and Simulation Software
- Analysis and prediction system
- others

Development of ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics.
We are evaluating the characteristics of ultrasonic equipment according to the purpose of use. <<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation are analyzed and evaluated in relation to the surface condition of the target object through impulse response characteristics and autocorrelation analysis as response characteristics of the ultrasonic vibration phenomenon. 3) We evaluate the interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on past experiences and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data using ultrasonic measurement data.
Development of "Control Technology for Nonlinear Phenomena" Using a Small Pump
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing

Technical documentation on the use of fine bubbles (microbubbles) in ultrasonic applications - Deaeration fine bubble generation liquid circulation device.
Technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls acoustic flow of ultrasound— 1-1. Basics of Ultrasound 1-2. Propagation Phenomena of Ultrasonic Vibration 1-3. Fine Bubbles (Microbubbles) *Properties of Microbubbles* 1) Bubbles of about 10μm rise slowly over approximately 3 hours to a height of 1m. 2) The generated bubbles exist independently without coalescing, resulting in excellent dispersion. 3) They have the property of slowly rising in water and adsorbing tiny debris to bring it to the surface. ... 13) The negative potential depends on the pH of the water. 14) Microbubbles have excellent scattering characteristics for ultrasound. 15) Microbubbles collapse as a resonance phenomenon when exposed to ultrasonic irradiation. These properties are expected to be further elucidated in the future, but currently contain many unknown aspects. Propagation Characteristics of Ultrasound 1) Detection of Vibration Modes (Changes in Self-Correlation) 2) Detection of Nonlinear Phenomena (Changes in Bicoherence) 3) Detection of Response Characteristics (Analysis of Impulse Response) 4) Detection of Interactions (Analysis of Power Contribution Rate)
Digitize all the information necessary for specification decisions! Conduct meetings without omissions or mistakes to improve operational efficiency.
- Scientific Calculation and Simulation Software
Publishing about challenges and concerns before implementation, triggers for implementation, changes and usage status after implementation, etc.!
- Scientific Calculation and Simulation Software
Understand the challenges before implementation and the effects after implementation! An explanation of the benefits and useful points is also provided.
- Scientific Calculation and Simulation Software
"Ultrasonic system" technology that enables control of ultrasonic propagation conditions in the 1-900 MHz range.
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others

Ultrasonic cleaning machine liquid circulation technology: The flow and shape of acoustic streams and the constructal law - Control technology for nonlinear phenomena -
The Ultrasonic System Research Institute has developed ultrasonic utilization technology (nonlinear phenomena: control of acoustic flow) using the "Constructal Law" related to flow and shape, inspired by the observation of flow. Regarding ultrasonic utilization, we believe that through our experience in observing flow, we can intuitively grasp acoustic flow (the nonlinear phenomenon of ultrasound). Acoustic flow <General Concept> When a finite amplitude wave propagates through a gas or liquid, acoustic flow occurs. Acoustic flow is a unidirectional steady flow of matter that arises either as a result of viscous losses from wave pulses in a free inhomogeneous field, or in the vicinity of obstacles (cleaning materials, jigs, liquid circulation) within an acoustic field, or near vibrating objects due to inertial losses. Characteristics of ultrasound: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Evaluation technology for ultrasonic propagation conditions based on the measurement and analysis of sound pressure data.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Cavitation and acoustic flow of ultrasonic phenomena
- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Basic Information The Ultrasonic System Research Institute has developed ultrasonic <dynamic control> technology that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Note: Control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. Compared to previous control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately in practical applications and is proposed and addressed as consulting (with increasing achievements in precision cleaning and stirring at the nano level). Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)
Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.
- Scientific Calculation and Simulation Software
- Other analytical equipment
- others

Manufacturing technology for ultrasound probes (consulting support)
Manufacturing Technology for Ultrasonic Probes (Consulting Available) ――Surface Treatment of Piezoelectric Elements――Dynamic Characteristics Evaluation Technology―― The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 900 MHz, based on the classification of ultrasonic propagation characteristics (acoustic characteristics). This includes surface treatment of piezoelectric elements and evaluation of dynamic characteristics. We can develop original ultrasonic probes tailored to specific purposes (for vibration and sound pressure measurement, oscillation control, or dual-use types). This technology is available for consulting. If you are interested, please contact us via email. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed through analysis) - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator Propagation Characteristics of Ultrasonic Probes 1) Vibration Modes 2) Nonlinear Phenomena 3) Response Characteristics 4) Interactions
--- Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) ---
- Scientific Calculation and Simulation Software
- Analysis and prediction system
- others

- Optimization Technology for Cavitation and Acoustic Flow -
The Ultrasonic System Research Institute has developed a technology to utilize (control) "nonlinear phenomena related to the generation of harmonics in ultrasound" by analyzing ultrasonic sound pressure measurement data (bispectral analysis, etc.) according to specific purposes. With this technology, when using multiple ultrasonic transducers of different frequencies, it becomes possible to set (manage) the propagation state of ultrasound influenced by harmonics. Therefore, it enables the realization of appropriate or effective combinations of frequencies. This is very effective as it allows for the detection and confirmation of effective propagation states for cleaning, surface modification, and the promotion of chemical reactions. Furthermore, by combining the control of standing waves with liquid circulation control, dynamic control becomes possible to change the effects of cavitation and acceleration (acoustic flow) according to the intended purpose. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)
- Feedback Analysis Using Autoregressive Models: Analysis of Power Contribution Rates - Effects of Tanks and Ultrasound, Cleaning Materials and Ultrasound, Adjacent Tanks, ...
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

"Experiences Regarding Shannon's First Theorem" - Original Technology Development -
* "Shannon's First Theorem" The relationship between information and entropy (as information increases, entropy decreases) Entropy: The average amount of information per symbol from a memoryless information source ... "Experiences Related to Shannon's First Theorem" — Original Technology Development — 1) Theme "Shannon's First Theorem is practically useful based on experience" 1-1) Useful for creating models related to the consideration of basic systems (Note 1) 1-2) Useful as foundational knowledge regarding data and noise (While it may be difficult to understand its necessity in routine development tasks, when considered from the perspective of high originality in research and development of new products, it is very effective as a research viewpoint (Note 2)) Note 1: Example - Consistency and systematization of objects related to system development (e.g., algorithms) Note 2: Example - Cause analysis of machine vibrations, electrical noise, program bugs, and defects...
Analysis of sound pressure measurement data (autocorrelation, power spectrum, bispectrum, power contribution rate, impulse response, etc.) evaluation and technology.
- Scientific Calculation and Simulation Software
- Non-destructive testing
- others

Nonlinear Oscillation Control Technology for Ultrasonic Probes Based on Sound Pressure Measurement Analysis - Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena -
The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by optimizing various interactions through the oscillation control of two types of ultrasonic probes from two oscillation channels of a function generator. Note: Nonlinear (resonance) phenomenon The resonance phenomenon that occurs due to the generation of harmonics resulting from original oscillation control, leading to high amplitude ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the control of dynamic changes in surface elastic waves according to their intended use. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz (confirmed by sound pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function generator
- Technology combining sweep oscillation with ultrasonic probes and ultrasonic cleaners -
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others

Ultrasonic Nonlinear Oscillation Control Technology Using a Portable Ultrasonic Cleaner (50kHz 50W)
The Ultrasonic System Research Institute has developed a new acoustic flow control technology utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveforms and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
- Combination technology of pulse oscillation and sweep oscillation -
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -
The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.
Control system using ultrasonic oscillation probe and receiving probe.
- Other measuring instruments
- others
- Scientific Calculation and Simulation Software

Technology for Adding Megahertz Ultrasound to Ultrasonic Cleaners — Nonlinear Oscillation Control Technology Using Original Ultrasonic Probes —
The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 200 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic probe for vibration measurement: Outline specifications - Measurement range: 0.01 Hz to 100 MHz - Oscillation range: 1 kHz to 25 MHz - Propagation range: 1 kHz to over 900 MHz - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Measurement equipment: Example - Oscilloscope - Oscillation equipment: Example - Function generator
To stabilize the effects of cavitation, a statistical perspective is essential — a technology to optimize nonlinear ultrasonic phenomena according to specific purposes.
- others
- Scientific Calculation and Simulation Software
- Other analytical equipment

Ultrasonic sound pressure data analysis and evaluation technology (Leading to new ultrasonic applications from ultrasonic sound pressure and vibration data)
The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained from ultrasonic testers chronologically, we establish and verify new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are very effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.
A technology for measuring, analyzing, and evaluating the propagation state of ultrasound, applied using feedback analysis techniques based on multivariate autoregressive models.
- Scientific Calculation and Simulation Software
- Non-destructive testing
- others

Ultrasonic sound pressure data analysis and evaluation technology (Leading to new ultrasonic applications from ultrasonic sound pressure and vibration data)
The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained from ultrasonic testers chronologically, we establish and verify new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are very effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.
New ultrasonic dynamic control technology
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

"Experiences Regarding Shannon's First Theorem" - Original Technology Development -
* "Shannon's First Theorem" The relationship between information and entropy (as information increases, entropy decreases) Entropy: The average amount of information per symbol from a memoryless information source ... "Experiences Related to Shannon's First Theorem" — Original Technology Development — 1) Theme "Shannon's First Theorem is practically useful based on experience" 1-1) Useful for creating models related to the consideration of basic systems (Note 1) 1-2) Useful as foundational knowledge regarding data and noise (While it may be difficult to understand its necessity in routine development tasks, when considered from the perspective of high originality in research and development of new products, it is very effective as a research viewpoint (Note 2)) Note 1: Example - Consistency and systematization of objects related to system development (e.g., algorithms) Note 2: Example - Cause analysis of machine vibrations, electrical noise, program bugs, and defects...