iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35537items
    • Facilities
      Facilities
      56659items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37011items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31845items
    • others
      others
      84511items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11605items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6980
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic cleaning machine liquid circulation technology: The flow and shape of acoustic streams and the constructal law - Control technology for nonlinear phenomena -
PRODUCT
  • Dec 02, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Dec 02, 2023

Ultrasonic cleaning machine liquid circulation technology: The flow and shape of acoustic streams and the constructal law - Control technology for nonlinear phenomena -

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed ultrasonic utilization technology (nonlinear phenomena: control of acoustic flow) using the "Constructal Law" related to flow and shape, inspired by the observation of flow. Regarding ultrasonic utilization, we believe that through our experience in observing flow, we can intuitively grasp acoustic flow (the nonlinear phenomenon of ultrasound). Acoustic flow <General Concept> When a finite amplitude wave propagates through a gas or liquid, acoustic flow occurs. Acoustic flow is a unidirectional steady flow of matter that arises either as a result of viscous losses from wave pulses in a free inhomogeneous field, or in the vicinity of obstacles (cleaning materials, jigs, liquid circulation) within an acoustic field, or near vibrating objects due to inertial losses. Characteristics of ultrasound: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
The flow and shape of sound waves; the constructal law.
The flow and shape of sound waves; the constructal law.
The flow and shape of sound waves; the constructal law.
The flow and shape of sound waves; the constructal law.
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

音響流(超音波の非線形現象)制御技術Ver2.pdf[4715483]

Related Links

Acoustic Flow (Ultrasonic) Control Technology
Acoustic Flow (Ultrasonic) Control Technology
Know-how
<Installation of ultrasonic transducers, degassing, and microbubble generation liquid circulation>

Related product

20220412-0004_09011.png

Consulting on "plating treatment" using ultrasound and fine bubbles.

Ultrasonic plating treatment technology using fine bubbles and megahertz ultrasonic waves.

The Ultrasonic System Research Institute has been developing ultrasonic plating treatment technology utilizing fine bubbles and megahertz ultrasound in collaboration with Japan Barrel Industry Co., Ltd. since 2015. Note: As of August 2024, it is continuously evolving based on good results into various application technologies. 1) Cleaning, processing, welding, plating... surface treatment... 2) Chemical reactions, liquid homogenization, stirring... 3) Inspection, evaluation... 4) Optimization control of ultrasound and fine bubbles tailored to specific purposes. Currently, in collaboration with Japan Barrel Industry Co., Ltd., we are developing application technologies utilizing ultrasound and fine bubbles for iron plating treatment (iron powder, amorphous, megahertz ultrasound...). If you are interested, please contact us via email. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_351600.jpg

Ultrasonic cleaning machine utilizing acoustic flow control with fine bubbles.

A technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls ultrasonic acoustic flow.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing fine bubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: An ultrasonic transducer subjected to surface modification treatment using ultrasonic waves and fine bubbles. 2: An ultrasonic dedicated tank subjected to surface modification treatment using ultrasonic waves and fine bubbles. 3: A degassing and fine bubble (microbubble) generation liquid circulation system. 4: An optimization control system for ultrasonic waves and liquid circulation controlled by a control device. 5: An acoustic pressure management system using an ultrasonic tester. Note: The tank, transducer, and tools can be adjusted for acoustic characteristics through aging treatment. *Features This is an effective cleaning device using a dedicated ultrasonic tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank become insufficient. (The standard tank is modified for surface treatment using ultrasonic waves and fine bubbles.) Ultrasonic waves (cavitation and acoustic flow) are controlled according to the target and purpose of cleaning, stirring, and surface modification.

  • pump
  • Drainage and ventilation equipment
  • Water Treatment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
0000.jpg

Ultrasonic cleaner design, manufacturing, and development consulting.

Application of measurement, analysis, and evaluation techniques related to ultrasonic propagation conditions — Providing know-how for optimal control of ultrasound.

The Ultrasonic System Research Institute has developed design and manufacturing technology for ultrasonic dedicated tanks by applying measurement and analysis techniques related to ultrasonic propagation conditions. With the technology developed this time, we can achieve efficient utilization of ultrasound suitable for ultrasonic cleaning and surface modification, as well as dynamic control of cavitation and acoustic flow, and propagation conditions for target objects, for ultrasonic dedicated tanks ranging from a maximum length of 3 cm (liquid volume 5 cc) to 600 cm (liquid volume 8000 liters), tailored to specific purposes. In conventional tank (or transducer) design and manufacturing, insufficient consideration of acoustic characteristics often leads to uneven and unstable phenomena due to interference and attenuation of vibrations, making ultrasonic lifespan and tank troubles more likely to occur. This technology can detect issues (various distributions of cleaning solutions, installation methods of tanks and transducers) even in existing tanks and transducers, allowing for improvements and enhancements. --- Provided Know-How --- 0) Design and manufacturing methods for devices 1) ON/OFF control of ultrasound 2) ON/OFF control of liquid circulation 3) Provision of optimization know-how 4) Methods for utilizing megahertz ultrasound

  • pump
  • Water Treatment Plant
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1726.jpg

Ultrasonic cleaning machine manufacturing and development consulting

Ultrasonic cleaning machine using a degassed fine bubble (microbubble) generation liquid circulation device.

The Ultrasonic System Research Institute provides consulting services for the manufacturing and development methods of ultrasonic cleaning machines using a "degasified fine bubble (microbubble) generation liquid circulation device" that can efficiently control ultrasonic waves. Ultrasonic Cleaning Machine (Degasified Fine Bubble Generation Liquid Circulation System) --Ultrasonic Cleaning System KT0600K-- 1) Cleaning Tank Material: SUS304 (t = 3.0 mm) Dimensions (internal): W530 × D530 × H370 mm 2) Liquid Circulation Degasified fine bubble generation liquid circulation system Nominal flow rate: 12-30 L/MIN 3) Ultrasonic (Power Supply: AC 100V) MU-300 Transducer Size: 260 × 150 × 90 mm Oscillator Size: 320 × 420 × 145 mm Frequency 1) 28 kHz Output: 300W (MAX) Frequency 2) 40 kHz Output: 300W (MAX) Frequency 3) 72 kHz Output: 300W (MAX)

  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231231aa.png

Consulting services based on the classification technology of ultrasonic propagation phenomena.

Ultrasonic control technology based on the classification of nonlinear phenomena in which ultrasonic vibrations propagate.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibration propagation by analyzing measurement data of ultrasonic propagation states using bispectral analysis. The method developed in this instance estimates the linear and nonlinear resonance effects based on the dynamic characteristics (changes in nonlinear phenomena) of the main frequencies (power spectrum) related to the ultrasonic propagation state. From previous data analysis, we have been able to classify effective utilization methods into the following four types: 1: Linear type 2: Nonlinear type 3: Mixed type 4: Variable type There are numerous successful cases of device development and control settings based on each of the above types. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: The following tools will be used for analysis. Note: "R" is a free statistical processing language and environment.

  • Other Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193a32.jpg

Surface treatment technology using dynamic control of ultrasound and fine bubbles.

Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the bubble size of the dissolved gas due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz (1-20 MHz) ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3690.jpg

Dynamic liquid circulation system for ultrasonic cleaning machines (consulting available)

Optimization technology for ultrasonic cleaning machines

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines, which propagate through the liquid, to set and control the state of ultrasonic cleaning machines according to specific purposes, taking into account the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific objectives through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology that considers "timbre." Note 2: The know-how involves settings related to the relationships between the cleaning machine, cleaning solution, and air at their respective boundaries. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has been made possible through degassing, aeration, ultrasound, and elastic wave dynamics on the tank surface.

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00093.jpg

Optimization Technology for Ultrasound - Optimization Technology for Resonance Phenomena and Nonlinear Phenomena -

Analysis of sound pressure measurement data (autocorrelation, power spectrum, bispectrum, power contribution rate, impulse response, etc.) evaluation and technology.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that enable control of resonance and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). In contrast to existing control technologies, this technology utilizes new measurement and evaluation parameters (note) related to the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic propagation states of ultrasound tailored to specific applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220501b2.jpg

Optimization technology for resonance phenomena and nonlinear phenomena using ultrasound.

- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Technology for Achieving Dynamic Control of Ultrasound

The Ultrasonic System Research Institute has developed a technology for ultrasonic <dynamic control> that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system and an abstract algebra model. Note: The control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. In contrast to existing control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we offer it as consulting services (there is an increasing track record of precision cleaning and stirring at the nano level). Note: Using original technology (ultrasonic tester), we measure, analyze, and evaluate dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6802.jpg

Ultrasonic technology for homogenization and fluidity improvement of liquids (especially solvents).

- Application of nanolevel stirring, emulsification, dispersion, and grinding technology to control nonlinear ultrasonic phenomena (acoustic flow) -

- Technology for controlling nonlinear ultrasonic phenomena for nano-level stirring, emulsification, dispersion, and grinding - Ultrasonic Treatment 1: "Nanonization of Powders" Ultrasonic Treatment 2: "Homogenization of Liquids and Improvement of Fluidity" The Ultrasonic System Research Institute has developed a technology for "homogenizing liquids and improving fluidity using ultrasonic technology," utilizing the "technology for controlling nonlinear ultrasonic phenomena (acoustic flow)." This technology controls ultrasonic (cavitation and acoustic flow) by utilizing (evaluating) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic tanks, and other items through surface inspection. Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, in accordance with the interactions between glass containers, ultrasonic waves, and target objects, through the control of ultrasonic oscillation. In particular, the dynamic characteristics of harmonics achieved through acoustic flow control enable responses at the nano level. Ultrasonic Propagation Characteristics: 1) Vibration Modes (Self-Correlation) 2) Nonlinear Phenomena (Bicoherence) 3) Response Characteristics (Impulse Response) 4) Interactions (Power Contribution Rate)

  • pump
  • Water Treatment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Consulting for a degassed fine bubble generation liquid circulation system.

Control technology for acoustic flow (the main cause of ultrasonic effects: nonlinear phenomena) using ultrasound and fine bubbles.

The Ultrasonic System Research Institute has developed a method (system) for the <analysis and evaluation> of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We provide consulting for a degassing microbubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable state, we conduct consulting to add the degassing microbubble generation liquid circulation system to specific tanks present on-site. 1: Explanation of principles 2: Specific proposals tailored to the cleaning machine (device) 3: Explanation of know-how 4: Explanation of verification methods, adjustment methods, and maintenance methods Development of nonlinear vibration control technology using fine bubbles and megahertz ultrasound Regarding this technology, we provide consulting as "vibration measurement technology utilizing ultrasound." Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
eeIMG_8566ss.jpg

Ultrasonic equipment measurement and analysis services (consulting support)

We provide on-site services for the measurement, analysis, and evaluation of ultrasonic equipment.

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the <analysis, experimentation, and evaluation> of ultrasound, utilizing "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. Using this technology, we conduct <sound pressure measurement, experimentation, analysis, and evaluation> (including on-site support) for ultrasonic cleaning machines. To evaluate the complex and varying usage conditions of ultrasound, we do not rely solely on sound pressure and frequency; instead, we consider "timbre." We analyze it using a time series data autoregressive model and report and propose <evaluation and application> based on statistical models.

  • pump
  • Turbid water and muddy water treatment machines
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_8304.jpg

Original ultrasonic probe for a megahertz ultrasonic system.

Application of megahertz ultrasonic oscillation control technology

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states from 1 to 100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation of several tons of objects can be controlled with an ultrasonic output of less than 20W, even in a 1000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to the resonance phenomenon of ultrasonic vibrations.

  • Other analytical equipment
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Megahertz ultrasonic system (application of ultrasonic oscillation control technology)

"Ultrasonic system" technology that enables control of ultrasonic propagation conditions in the 1-900 MHz range.

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states from 1 to 900 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology for precision cleaning, processing, stirring, welding, and plating, based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for several tons of objects even in a 1000-liter water tank with an ultrasonic output of less than 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena, resulting in ultrasonic vibration resonance phenomena.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3168.jpg

Development technology for ultrasonic propagation control systems for various solvents.

Development of an ultrasonic probe utilizing the acoustic properties of Teflon rods (with iron cores).

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control system for various solvents (such as hydrofluoric acid and hydrochloric acid) using Teflon (PTFE). By confirming the basic acoustic properties (response characteristics, propagation characteristics) of Teflon rods (with iron cores), it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). Specifically, using two types of ultrasonic oscillation control probes, we set oscillation conditions based on measurements and analyses of the intended purpose and interactions, combining sweep oscillation and pulse oscillation. In particular, to control low-frequency resonance phenomena, we utilize high-frequency nonlinear phenomena. Therefore, sound pressure measurements require a measurement range of over 100 MHz. The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Fluctuation characteristics - Effects due to interactions

  • pump
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20141021a.jpg

Ultrasonic control technology using indirect containers

Technology for controlling nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed a technology for controlling "nonlinear phenomena of ultrasound (acoustic flow)" using indirect containers. This technology utilizes (evaluates) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic water tanks, and other items to control ultrasound (cavitation and acoustic flow). Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nanoscale. This has been applied and developed from examples of dispersing metal powders to nanosize. By employing control technologies for standing waves and cavitation in relation to ultrasound, as well as propagation control technologies for indirect containers, we can appropriately control cavitation and acoustic flow. Through original measurement and analysis techniques for ultrasonic propagation states, we have confirmed the evaluation of acoustic flow and numerous know-how.

  • Analysis and prediction system
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(17)

Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena Ver2

Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

A method for controlling an ultrasonic transducer according to the intended use of ultrasound.

A method for controlling an ultrasonic transducer according to the intended use of ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

On the Propagation Phenomenon of Ultrasound - Classification and Evaluation Techniques of Ultrasound through Sound Pressure Measurement Analysis -

On the Propagation Phenomenon of Ultrasound - Classification and Evaluation Techniques of Ultrasound through Sound Pressure Measurement Analysis -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

An experiment to control chemical reactions using ultrasound.

An experiment to control chemical reactions using ultrasound.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble (microbubble) generation liquid circulation device

Deaeration fine bubble (microbubble) generation liquid circulation device

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System for Controlling Nonlinear Phenomena (Sweep Oscillation) - Ver4

Ultrasonic Oscillation System for Controlling Nonlinear Phenomena (Sweep Oscillation) - Ver4

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation technology for ultrasonic transducers

Surface residual stress relaxation technology for ultrasonic transducers

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning (control of nonlinear phenomena) technology Ver3 - Precision cleaning technology using fine bubbles and acoustic flow -

Ultrasonic cleaning (control of nonlinear phenomena) technology Ver3 - Precision cleaning technology using fine bubbles and acoustic flow -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Precision cleaning technology using megahertz ultrasonic waves - Case study in the plating process.

Precision cleaning technology using megahertz ultrasonic waves - Case study in the plating process.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Technology Data - New Ultrasonic Cleaning - Ver 2 - Ultrasonic System Research Institute

Ultrasonic Technology Data - New Ultrasonic Cleaning - Ver 2 - Ultrasonic System Research Institute

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation system (20 MHz) using a commercially available function generator.

Ultrasonic oscillation system (20 MHz) using a commercially available function generator.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Manufacturing and development consulting for ultrasonic cleaning machines (tank design, degassing fine bubble generation liquid circulation devices, ultrasonic control, ...)

Manufacturing and development consulting for ultrasonic cleaning machines (tank design, degassing fine bubble generation liquid circulation devices, ultrasonic control, ...)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Control technology for acoustic streaming (a nonlinear phenomenon of ultrasound), which is a major factor in ultrasonic cleaning: Measurement, analysis, evaluation, and technology of sound pressure data.

Control technology for acoustic streaming (a nonlinear phenomenon of ultrasound), which is a major factor in ultrasonic cleaning: Measurement, analysis, evaluation, and technology of sound pressure data.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Maintenance technology for piping devices and piping systems using ultrasonic technology.

Maintenance technology for piping devices and piping systems using ultrasonic technology.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble generation liquid circulation device - a system for uniformizing the dissolved oxygen concentration in ultrasonic cleaning machines.

Deaeration fine bubble generation liquid circulation device - a system for uniformizing the dissolved oxygen concentration in ultrasonic cleaning machines.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Exhibition Report | Grace Solar's Solar Mounts That Withstand Brazil's Harsh Climate Are Here

  • NEW
  • COMPANY

#Intersolar South America - We invite you to attend the most influential solar energy event in Latin America. You will be able to see innovative solar mounting solutions designed for the Latin American market. At booth R2.82, Grace Solar will showcase how it is evolving regional solar projects: - Ground-mounted solar mounting systems suitable for Brazil's tropical storms and humid environments - Flexible roof installation systems that can accommodate diverse architectural needs Let's build the future of solar power together! Venue: Expo Center Norte, São Paulo, Brazil, Booth R2.82 Date: August 26-28, 2025

Aug 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Fragrance production at cabaret clubs in Tokyo.

  • NEW
  • PRODUCT

We have introduced the commercial aroma diffuser "Majesta Fragrance" to a cabaret club in Tokyo. The selected scent is "Royale," which offers a sense of calm and elegance. It spreads naturally throughout the floor, creating a high-quality space that satisfies the five senses. Majesta Fragrance is available for a free trial installation exclusively in the Kanto area. If you are interested in enhancing your store's scent experience, please feel free to contact us.

Aug 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Develop logical thinking and problem-finding skills that can be applied to practical work in a short time. Start with a free trial!

[Announcement of Trial Version Catalog Release] "Conceptual Skills Course" Useful for Promotion and Development

  • NEW
  • CATALOG

We have released a catalog for a trial version of a conceptual skills course designed to efficiently develop logical thinking and problem-solving skills in a short period. The course is structured in three levels, from basic to practical and applied, supporting skill enhancement directly related to work through video viewing, exercises, and detailed feedback. There is also a free trial version available, lasting about 10 to 20 minutes, allowing you to easily check the course content and approach. It is ideal for promotion and advancement exam preparation, as well as for developing the next generation of leaders, with a proven track record in many companies. For detailed materials or to apply for the trial version, please use the link below. Feel free to take advantage of it!

Aug 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
RTC-I116

Launch of the industrial rugged tablet RTC-I series "RTC-I116-JP" has begun.

  • NEW
  • PRODUCT

The RTC series rugged tablets are designed to withstand harsh industrial environments, enhancing productivity, improving safety, and reducing operational costs. The RTC-I116-JP is equipped with a 12th generation Intel Core i7/i5 processor and Windows 10/11, and its 11.6-inch touchscreen allows for precise operation even in rainy conditions or while wearing gloves. Additionally, the display with a brightness of 1,000 nits ensures clear visibility even under direct sunlight, and with IP66 compliance, a 1.2m drop resistance, and hot-swappable capabilities, it strongly supports continuous operation in the field. Factory options: ★ 2D barcode scanner RTC-2D-Z ★ NFC module RTC-NFC116 A wide range of selectable options: ■ Vehicle RAM bracket RTC-RAM ■ Vehicle charger (for vehicle batteries) RTC-VC-19D ■ Vehicle charger (for cigarette sockets) RTC-VC-100W ■ Shoulder strap RTC-SS ■ Stylus pen RTC-SP ■ Lithium-ion battery (3800mAh) RTC-LB-3800

Aug 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Read it all at once during Obon! Top 10 access numbers from April to June.

SBS Marketing Co., Ltd. Read in one go during Obon! Top 10 access numbers from April to June.

  • NEW
  • OTHER

Based on practical experience in support companies and business companies, SBS Marketing Co., Ltd. provides consulting services related to marketing, sales promotion, and customer acquisition mainly in the BtoB (business-to-business) sector. On August 12, 2025 (Tuesday), they published the page "Read in One Go During Obon! Top 10 Accesses from April to June." This page introduces the top 10 blog articles by access count from April to June 2025 that you want to read in one go during Obon. (Page Overview: Excerpts) ■10th: "Filter Bubble" ■09th: Should 'Phone Numbers' Be Public on Websites!? ■08th: "In-group Bias" ■07th: "Peter Pan Syndrome" ■06th: "Butterfly Effect" ■05th: Useful for Business! Downloadable Content ■04th: "Reaction Formation" ■03rd: Is "Quality Over Quantity" Important? Or is "Quantity Over Quality" Important? ■02nd: "The Emperor's New Clothes" Phenomenon ■01st: "Janet's Law" ▼ For more details, please visit this page. https://sbsmarketing.co.jp/blog/top-10-accesses-in-2025-2q-2025-08/

Aug 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.