Case studies of dynamic control of ultrasound based on acoustic pressure measurement analysis.
Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.
The Ultrasonic System Research Institute has been manufacturing and selling measurement and analysis systems for ultrasonic vibrations since April 2012. The system allows for visual confirmation of the nonlinear phenomena of ultrasound (acoustic streaming) and cavitation effects through graphs, considering elastic wave propagation in the analysis of the measured data. To account for the "nonlinear phenomena" in the complex variations of ultrasonic usage conditions, we analyze the autocorrelation and bispectrum using autoregressive models of time series data to evaluate and apply these changes. We have realized numerous new utilization methods according to various purposes. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function
Inquire About This Product
basic information
<< Ultrasonic Sound Pressure Data Analysis >> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in relation to the surface condition of the target object through impulse response characteristics and autocorrelation analysis as response characteristics of the ultrasonic vibration phenomenon. 3) The interaction between the oscillation and the target object (cleaning items, cleaning liquid, water tank, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the ultrasound propagating in the target object (propagation of surface elastic waves) or the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on past experiences and achievements by adapting the analysis techniques of time series data to the measurement data of ultrasound, thereby addressing the dynamic characteristics of complex ultrasonic vibrations.
Price information
Feel free to contact us.
Delivery Time
※Feel free to contact us.
Applications/Examples of results
2008. 8 Established the Ultrasonic System Research Institute ... 2012. 1 Started manufacturing and selling ultrasonic measurement and analysis systems (Ultrasonic Tester NA) ... 2024. 6 Developed optimization and evaluation technology related to tanks, ultrasound, and liquid circulation 2024. 7 Developed an ultrasonic probe using components with iron plating on polyimide film 2024. 8 Developed a "megahertz ultrasonic control" method applying Shannon's juggling theorem 2024. 9 Developed acoustic flow control technology using a portable ultrasonic cleaner 2024. 10 Developed "vibration technology" utilizing megahertz ultrasound 2024. 10 Developed an ultrasonic oscillation control probe using a stainless steel vacuum double-structure container 2024. 11 Developed megahertz flow-type ultrasonic (underwater shower) technology 2024. 11 Developed ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics 2024. 12 Developed nonlinear oscillation control technology for ultrasonic probes 2024. 12 Developed surface inspection technology based on ultrasonic propagation conditions 2025. 1 Developed a megahertz flow-type ultrasonic system using a degassing fine bubble generation liquid circulation device
Detailed information
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Optimization technology based on nonlinear vibration phenomena of ultrasound.
-
Relaxation treatment of surface residual stress in ultrasonic transducers.
catalog(27)
Download All Catalogs











News about this product(37)
Company information
The Ultrasonic System Research Institute conducts the following activities with its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control): 1) Manufacturing and sales of ultrasonic systems (sound pressure measurement analysis, oscillation control) 2) Consulting services for various equipment (Note): cleaning machines, stirring devices, processing equipment, machine tools, plating devices, welding devices, etc. Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) We manufacture and sell a system that combines the "Ultrasonic Tester NA (recommended type)" for easy measurement and analysis of ultrasonic waves and the "Ultrasonic Oscillation System (1 MHz, 20 MHz)" for easy oscillation control. <Patent Applications Filed> Patent Application No. 2021-125866: Ultrasonic Control (Ultrasonic Oscillation Control Probe) Patent Application No. 2021-159990: Ultrasonic Welding Patent Application No. 2021-161532: Ultrasonic Plating Patent Application No. 2021-171909: Ultrasonic Processing Patent Application No. 2021-175568: Flow-type Ultrasonic Cleaning Some of the manufacturing technology for the ultrasonic oscillation control probe is described in Patent Application No. 2021-125866. Patent Application No. 2023-195514: Ultrasonic Plating Using Megahertz Ultrasonic Waves and Fine Bubbles.