iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35508items
    • Facilities
      Facilities
      56007items
    • Lighting and Interior
      Lighting and Interior
      17329items
    • Common materials
      Common materials
      36685items
    • Civil Engineering Materials
      Civil Engineering Materials
      9540items
    • Construction, work and methods
      Construction, work and methods
      27316items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29373items
    • IT/Software
      IT/Software
      33622items
    • others
      others
      76672items
    • Store and facility supplies
      Store and facility supplies
      4382items
    • Office and commercial supplies
      Office and commercial supplies
      11486items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6772items
    • Energy and Resources
      Energy and Resources
      11688items
  • Search for companies by industry

    • Information and Communications
      7217
    • others
      7031
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4659
    • Trading company/Wholesale
      3002
    • Other construction industries
      2449
    • Electrical equipment construction business
      642
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      465
    • Architectural design office
      359
    • retail
      344
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      289
    • General contractors and subcontractors
      283
    • Interior construction business
      278
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      253
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      30
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      7
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic probe sweep oscillation technology - Oscillation control of low-frequency resonance phenomena and high-frequency nonlinear phenomena.
PRODUCT
  • Jan 08, 2025
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Jan 08, 2025

Ultrasonic probe sweep oscillation technology - Oscillation control of low-frequency resonance phenomena and high-frequency nonlinear phenomena.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to optimize the nonlinear vibration phenomenon of surface acoustic waves through oscillation control technology based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. Note 1: Original nonlinear resonance phenomenon The resonance phenomenon of ultrasonic vibrations occurs due to the generation of harmonics resulting from original oscillation control of ultrasonic waves, which achieves high amplitude through resonance. The key point is the optimization of the ultrasonic propagation section. Note 2: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Technology for setting oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the ultrasonic propagation characteristics of the device/equipment. 2) Setting of sweep conditions corresponding to the ultrasonic propagation characteristics of the device/equipment. 3) Setting of output levels corresponding to the ultrasonic propagation characteristics of the device/equipment. 4) Adjustment of various interactions corresponding to the ultrasonic propagation characteristics of the device/equipment.
Sweep oscillation technology using ultrasonic probes
Sweep oscillation technology using ultrasonic probes
Sweep oscillation technology using ultrasonic probes
Sweep oscillation technology using ultrasonic probes
  • Inquiry about this news

    Contact Us Online

Related Documents

超音波プローブによるスイープ発振技術.pdf[4328419]

Related product

IMG_7125dd.jpg

Megahertz ultrasonic technology - Control of surface acoustic waves -

Technology for developing a nonlinear control system for ultrasound using feedback analysis techniques based on multivariate autoregressive models.

The Ultrasonic System Research Institute has developed dynamic control technology for surface elastic waves, taking into account the propagation characteristics and paths of ultrasound using an original ultrasonic system (sound pressure measurement, analysis, evaluation, and oscillation control). This is a foundational technology for developing a nonlinear control system for ultrasound. It enables various applications tailored to specific purposes (cleaning, processing, stirring, chemical reactions, etc.). We are publishing fundamental experiments on megahertz ultrasound for various materials, structures, and sizes. The key point is the setting of oscillation conditions (waveform, output, frequency, variations, etc.) as a vibration system that allows for efficient control of nonlinear phenomena related to ultrasonic propagation. As specific technologies, we have developed concrete system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks, tools, etc., according to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4955.jpg

Technology for adding megahertz ultrasound to ultrasonic cleaners.

Original ultrasonic probe for megahertz ultrasonic sweep oscillation and pulse oscillation system.

The Ultrasonic System Research Institute (Location: Hachioji City, Tokyo) has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 900 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) - Material: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator - Measurement Equipment: Example - Oscilloscope

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Ultrasound (sweep oscillation, pulse oscillation) system - know-how -

- Technology for controlling nonlinear vibration phenomena through oscillation control of original ultrasonic probes -

The Ultrasonic System Research Institute has developed oscillation control technology based on the acoustic characteristics of probes through the manufacturing technology of original ultrasonic probes. This has evolved into technology for controlling the nonlinear vibration phenomena of surface acoustic waves. The key point is the optimization control method for ultrasonic oscillation control tailored to the propagation characteristics of surface acoustic waves on the surface of ultrasonic elements and their intended use (conditions for combining sweep oscillation and pulse oscillation). To achieve this, it is important to dynamically evaluate the propagation state of ultrasound through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). In particular, it is necessary to measure, analyze, and evaluate the dynamically changing oscillation characteristics of the ultrasonic probe (or element) and the oscillator (function generator) regarding their transmission and reception characteristics. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6756.jpg

Control technology for megahertz ultrasound applied using Shannon's juggling theorem.

Dynamic Control Method for Megahertz Ultrasound Based on Classification Techniques Related to Ultrasonic Propagation Phenomena

The Ultrasonic System Research Institute has developed a classification method for ultrasonic propagation phenomena based on the analysis results of ultrasonic sound pressure data and changes in the bispectrum. This classification has been applied to Shannon's juggling theorem to develop a "dynamic control method for megahertz ultrasound." This technology is being offered for consulting proposals and implementation support. To utilize ultrasonic propagation phenomena stably and efficiently, it is necessary to examine the response characteristics and interactions related to conditions other than oscillators and transducers, as well as to develop dedicated tools. By examining oscillation waveforms and control conditions, new ultrasonic effects (Note 1: Original nonlinear resonance phenomenon) can be discovered. Utilizing ultrasonic phenomena primarily driven by nonlinear effects according to specific purposes enables highly efficient use of ultrasound. In particular, there has been an increase in achievements in nanolevel ultrasonic technology. Note 1: Original nonlinear resonance phenomenon The generation of harmonics caused by original oscillation control, which is realized at high amplitudes due to resonance phenomena, results in the resonance phenomenon of ultrasonic vibrations.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • IoT

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103v3.jpg

Ultrasonic propagation control based on technology for measuring and analyzing various interactions of ultrasound.

Nonlinear propagation control technology considering the interaction of ultrasound - Optimization technology for ultrasound -

The Ultrasonic System Research Institute has developed "nonlinear ultrasonic propagation control technology" that takes into account the acoustic characteristics of ultrasonic systems (measuring and analyzing ultrasonic interactions) through the manufacturing technology of sound pressure measurement analysis devices (ultrasonic testers) and megahertz ultrasonic oscillation control probes. With the technology developed this time, it has become possible to achieve dynamic control of ultrasound tailored to specific purposes, based on the measurement and analysis of various interactions involving the target objects, ultrasonic equipment, and tools, through "ultrasonic oscillation (oscillators, transducers, etc.)." Note: Autocorrelation, bispectrum, power contribution rate, impulse response. In particular, by detecting and confirming the interactions between ultrasound and target objects concerning harmonics, effective control for cleaning complex shapes and precision parts (liquid circulation, tools, methods of securing cleaning objects, etc.) becomes clear. Therefore, appropriate selection of ultrasonic frequencies and combinations of transducers with different ultrasonic frequencies can be determined based on the target objects. This is an effective ultrasonic utilization technology tailored to specific purposes for processing, cleaning, surface modification, and promoting chemical reactions.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_351600.jpg

Ultrasonic cleaning machine utilizing acoustic flow control with fine bubbles.

A technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls ultrasonic acoustic flow.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing fine bubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: An ultrasonic transducer subjected to surface modification treatment using ultrasonic waves and fine bubbles. 2: An ultrasonic dedicated tank subjected to surface modification treatment using ultrasonic waves and fine bubbles. 3: A degassing and fine bubble (microbubble) generation liquid circulation system. 4: An optimization control system for ultrasonic waves and liquid circulation controlled by a control device. 5: An acoustic pressure management system using an ultrasonic tester. Note: The tank, transducer, and tools can be adjusted for acoustic characteristics through aging treatment. *Features This is an effective cleaning device using a dedicated ultrasonic tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank become insufficient. (The standard tank is modified for surface treatment using ultrasonic waves and fine bubbles.) Ultrasonic waves (cavitation and acoustic flow) are controlled according to the target and purpose of cleaning, stirring, and surface modification.

  • pump
  • Drainage and ventilation equipment
  • Water Treatment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Case studies of dynamic control of ultrasound based on acoustic pressure measurement analysis.

Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.

The Ultrasonic System Research Institute has been manufacturing and selling measurement and analysis systems for ultrasonic vibrations since April 2012. The system allows for visual confirmation of the nonlinear phenomena of ultrasound (acoustic streaming) and cavitation effects through graphs, considering elastic wave propagation in the analysis of the measured data. To account for the "nonlinear phenomena" in the complex variations of ultrasonic usage conditions, we analyze the autocorrelation and bispectrum using autoregressive models of time series data to evaluate and apply these changes. We have realized numerous new utilization methods according to various purposes. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7528.jpg

Cleaning technology using ultrasound and fine bubbles (microbubbles)

Ultrasonic cleaning technology based on the measurement, analysis, and evaluation of ultrasonic propagation conditions.

The Ultrasonic System Research Institute has developed technology that applies "measurement, analysis, and control" techniques related to the nonlinearity of ultrasound to analyze and evaluate the dynamic characteristics of ultrasonic vibrations propagating through various targets (elastic bodies, liquids, gases). This technology optimizes interactions concerning cleaning objects, tools, ultrasonic transducers, water tanks, and liquid circulation according to specific purposes. Through previous oscillation, measurement, and analysis using ultrasonic oscillation control probes and ultrasonic testers, we have developed optimization technology for ultrasonic utilization by examining various relationships and response characteristics (Note: power contribution rate, impulse response, etc.). Regarding the measurement and analysis of ultrasound, the setting of sampling time utilizes original simulation technology. This technology is provided as consulting for the optimization of ultrasonic systems (cleaning, stirring, processing, etc.). The propagation characteristics of ultrasound include: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rate)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0431.jpg

Ultrasonic sound pressure measurement analysis (consulting support)

Ultrasound consulting specialized in measurement and analysis of ultrasonic propagation conditions.

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained using ultrasonic testers in chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, drawing on the principles of statistical mathematics. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on good confirmations.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
0000.jpg

Ultrasonic cleaner design, manufacturing, and development consulting.

Application of measurement, analysis, and evaluation techniques related to ultrasonic propagation conditions — Providing know-how for optimal control of ultrasound.

The Ultrasonic System Research Institute has developed design and manufacturing technology for ultrasonic dedicated tanks by applying measurement and analysis techniques related to ultrasonic propagation conditions. With the technology developed this time, we can achieve efficient utilization of ultrasound suitable for ultrasonic cleaning and surface modification, as well as dynamic control of cavitation and acoustic flow, and propagation conditions for target objects, for ultrasonic dedicated tanks ranging from a maximum length of 3 cm (liquid volume 5 cc) to 600 cm (liquid volume 8000 liters), tailored to specific purposes. In conventional tank (or transducer) design and manufacturing, insufficient consideration of acoustic characteristics often leads to uneven and unstable phenomena due to interference and attenuation of vibrations, making ultrasonic lifespan and tank troubles more likely to occur. This technology can detect issues (various distributions of cleaning solutions, installation methods of tanks and transducers) even in existing tanks and transducers, allowing for improvements and enhancements. --- Provided Know-How --- 0) Design and manufacturing methods for devices 1) ON/OFF control of ultrasound 2) ON/OFF control of liquid circulation 3) Provision of optimization know-how 4) Methods for utilizing megahertz ultrasound

  • pump
  • Water Treatment Plant
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(10)

Deaeration fine bubble generation liquid circulation device - Technology for uniformity of cleaning solution and acoustic flow control -

Deaeration fine bubble generation liquid circulation device - Technology for uniformity of cleaning solution and acoustic flow control -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic control technology applied with the mathematical theory of communication.

Ultrasonic control technology applied with the mathematical theory of communication.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound sound pressure data analysis: autocorrelation, bispectrum, power contribution rate, impulse response.

Ultrasound sound pressure data analysis: autocorrelation, bispectrum, power contribution rate, impulse response.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Improvement of the ultrasonic cleaning machine (on-site support for the addition of fine bubble generation system)

Improvement of the ultrasonic cleaning machine (on-site support for the addition of fine bubble generation system)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Precision cleaning technology using ultrasound—Optimization of cavitation and acoustic flow.

Precision cleaning technology using ultrasound—Optimization of cavitation and acoustic flow.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic equipment's <sound pressure measurement, analysis, and evaluation> (onsite) service

Ultrasonic equipment's <sound pressure measurement, analysis, and evaluation> (onsite) service

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound Technology (R Language) Utilizing Statistical Thinking

Ultrasound Technology (R Language) Utilizing Statistical Thinking

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement analysis data

Ultrasonic sound pressure measurement analysis data

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

When the sensor detects the car, the rotating light will turn on.

Ideal for entrances and exits of parking lots and stores! Alert pedestrians of vehicle departures with the light from the rotating lamp! Here’s a proposal for a departure warning sensor! Free catalog available!

  • NEW
  • CATALOG

[To the owners of parking lots and parking lot construction companies] "I'm worried about not colliding with pedestrians when leaving the parking lot in my car..." Among vehicle entrances to parking lots, stores, residences, and factories, those particularly facing sidewalks or roadways are expected to pose risks of dangerous incidents such as collisions with pedestrians or between vehicles. To alleviate such concerns, Hotron proposes a [Departure Warning Sensor] that detects vehicle departures using various sensors and alerts the surroundings with LED lights and buzzers. The device consists of a simple configuration of "Sensor" + "Controller" + "Switching Power Supply (24V)" + "LED Rotating Light." *Please note that a separate control panel including the controller and switching power supply (24V) is required when using the departure warning system. *We kindly ask customers to arrange for the switching power supply (24V), LED rotating light, control panel, circuit breakers, etc. Since it can be retrofitted, it can also be used for existing parking lot entrances. We hope this will contribute to safer vehicle passage for everyone. ◎ For more details, please contact us or download the catalog.

Nov 10, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Important] Announcement of the Renewal of Compass PLUS on December 16, 2025

  • NEW
  • PRODUCT

In recent years, with the increasing push for DX (digital transformation) and valuable feedback from all users in the field, we will be fully renewing "Compass PLUS." The new Compass PLUS will leverage its traditional strengths while completely revamping its design, functionality, and usability, thereby further enhancing its value in practical use. The official release is as follows, so please wait a little longer until then. 1) Improved visibility and operability 2) Enhanced intuitiveness 3) Streamlined information sharing These are the main points of improvement, and it will be available starting December 16, 2025. For an overview of the renewal, please download the materials. We are also planning an online briefing session, so please download the materials for more details as well. Renewal date: Tuesday, December 16, 2025 Temporary suspension period: Monday, December 15, 2025, 17:00 – 19:00 *Due to the renewal, data updates for observation devices (wave height, weather, water level, noise and vibration) will be suspended during the temporary suspension period. However, viewing of forecast information and other various information will still be possible as usual.

Nov 10, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
306_Easier to Sustain "Competitive Advantage" Continuously!? 'VRIO Analysis'

"SBS Marketing Co., Ltd." Makes it Easier to Sustain Competitive Advantage!? 'VRIO Analysis'

  • NEW
  • OTHER

Based on practical experience in support companies and business companies, SBS Marketing Co., Ltd. provides consulting services related to marketing, sales promotion, and customer acquisition mainly in the BtoB (business-to-business) sector. On November 4, 2025 (Tuesday), they published a page titled "Is it easier to maintain 'competitive advantage' sustainably!? 'VRIO Analysis'". The 'VRIO Analysis' is a framework for understanding the advantages over competitors and the management resources held by a company. It explains the four components that make up the analysis, the differences from SWOT analysis, the advantages and disadvantages (points to note) of utilizing it, and the five steps of the analytical method. (Page Overview: Excerpts) ■ What is 'VRIO Analysis'? ■ The four components of 'VRIO Analysis' ■ Differences between 'VRIO Analysis' and 'SWOT Analysis' ■ Advantages of utilizing 'VRIO Analysis' ■ Disadvantages of 'VRIO Analysis' ■ The five steps of 'VRIO Analysis' (DL content only) ▼ For more details, please visit this page. https://sbsmarketing.co.jp/blog/vrio-analysis-2025-11/

Nov 09, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Non-contact light beam touch sensor 'HA-T401'

Recommended for infection control! Introduction of non-contact sensors for facilities.

  • NEW
  • COMPANY

In recent times, there has been a growing interest in infection control measures and facility hygiene management. Our company offers non-contact sensor products that are recommended for commercial facilities, food factories, and nursing and caregiving facilities. 【Sensors for Automatic Doors】 ● Light Touch Sensor HA-T401 … When you wave your hand in front of the automatic door, the sensor detects the movement and opens or closes the door. This is recommended for making doors with touch switches non-contact. ● Hand Wave Sensor PF-R5, PF-U2, DHS-1 … Opens and closes the automatic door by waving your hand in front of the sensor. ● Foot Switch PF-01S/01D/03S/05 … Opens and closes the automatic door by placing your foot in the opening. 【Access Control System】 ● Face Recognition + Unmanned Temperature Measurement DS Series … Allows for face recognition along with mask detection and body temperature measurement simultaneously. ● Automatic Disinfectant Spray Dispenser PHW-03B … Automatically sprays disinfectant when you wave your hand in front of the sensor. 【Nursing and Care Sensors】 ● Infrared Bed Exit Sensor "Just Place It Pole-kun" … This bed exit sensor is installed next to the bed and notifies via nurse call when the subject enters the detection range. ◎ For more details, please download the catalog or contact us.

Nov 07, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Free Materials Available] Introducing Useful Information on Vehicle Detection Sensors!

  • NEW
  • CATALOG

To customers considering the introduction of vehicle detection sensors for parking lot construction, design, or management: Are you facing any challenges with current issues or selecting the right sensors for parking management? Hotron offers free materials that explain how to utilize vehicle detection sensors and the benefits of their introduction! ▽ Here is the lineup of materials ◉ Vehicle Detection Sensor Basic Guide This guide focuses on the challenges and solutions in parking lot operations, introducing the overview of vehicle detection sensors. ◉ Key Points for Introducing Vehicle Detection Sensors This material discusses the benefits of introduction based on installation locations and specific challenges. ◉ Case Studies of Vehicle Detection Sensor Implementation This document presents the challenges before implementation and the results after introduction. For more details, please download from our website and check it out. https://www.hotron.co.jp/download/

Nov 07, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 気づかないうちに…著作権侵害してませんか? 著作権に関するご相談はサンメディアまで
  • 位置情報で実現するスマートロジスティクス 排出ガスも待機時間も”見える化”で解決
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.