iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35541items
    • Facilities
      Facilities
      56656items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37004items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27655items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31783items
    • others
      others
      84501items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11462items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11605items
  • Search for companies by industry

    • Information and Communications
      7197
    • others
      6978
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2456
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)
COMPANY
  • Dec 03, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Dec 03, 2024

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.
Vibration technology using megahertz ultrasonic waves
Vibration technology using megahertz ultrasonic waves
Vibration technology using megahertz ultrasound
Vibration technology using megahertz ultrasound
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Links

Vibration Measurement Technology
"Vibration Measurement Technology" using ultrasound

Related product

IMG_4955.jpg

Technology for adding megahertz ultrasound to ultrasonic cleaners.

Original ultrasonic probe for megahertz ultrasonic sweep oscillation and pulse oscillation system.

The Ultrasonic System Research Institute (Location: Hachioji City, Tokyo) has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 900 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) - Material: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator - Measurement Equipment: Example - Oscilloscope

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5180.jpg

We provide manufacturing technology for ultrasonic sound pressure measurement analysis systems.

We will disclose the manufacturing know-how of ultrasonic probes - applying feedback analysis technology, ultrasonic sound pressure data analysis technology.

The Ultrasonic System Research Institute manufactures and sells the "Ultrasonic Tester NA (Recommended Type)," which makes ultrasonic measurement and analysis easy. We provide manufacturing technology and data analysis evaluation technology, including know-how for this system. System Overview (Recommended System: Ultrasonic Tester NA) Contents: - One dedicated probe for measuring sound pressure of ultrasonic cleaners - One general-purpose ultrasonic measurement probe - One oscilloscope set - One set of analysis software, manuals, and various installation sets Features: - Measurement (analysis) frequency range: Specification from 0.1 Hz to 10 MHz - Ultrasonic oscillation: Specification from 1 Hz to 100 kHz - Capable of measuring surface vibrations - Continuous measurement for 24 hours - Simultaneous measurement of any two points - Measurement results displayed in graphs - Analysis software for time-series data included This is a measurement system using ultrasonic probes. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, detecting various acoustic performances.

  • Water Treatment
  • Measurement and analysis equipment leasing and rental
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220712bss.jpg

Manufacturing technology for ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type)

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 500 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed through acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., and through oscillation control, we achieve propagation states tailored to specific purposes regarding acoustic pressure levels, frequencies, and dynamic characteristics. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Case studies of dynamic control of ultrasound based on acoustic pressure measurement analysis.

Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.

The Ultrasonic System Research Institute has been manufacturing and selling measurement and analysis systems for ultrasonic vibrations since April 2012. The system allows for visual confirmation of the nonlinear phenomena of ultrasound (acoustic streaming) and cavitation effects through graphs, considering elastic wave propagation in the analysis of the measured data. To account for the "nonlinear phenomena" in the complex variations of ultrasonic usage conditions, we analyze the autocorrelation and bispectrum using autoregressive models of time series data to evaluate and apply these changes. We have realized numerous new utilization methods according to various purposes. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Improvement and enhancement of ultrasonic devices <Measurement, analysis, and evaluation of sound pressure data>

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

Application of ultrasonic sound pressure measurement, analysis, and evaluation technology The Ultrasonic System Research Institute has developed a method for the analysis and evaluation of ultrasound (system technology) that applies measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we will provide measurement, analysis, and evaluation support for ultrasonic devices. For specific support and costs, please contact us via email. *Comment* Currently, regarding the use of ultrasound, I believe it is very difficult to detect and confirm the optimal ultrasonic state for the intended purpose. Therefore, by incorporating "sound pressure data" into the daily management of ultrasound, we aim to resolve the relationship with the final evaluation state (defect rate, yield, etc.) through the accumulation and analysis of statistical data. By analyzing using time-series data analysis technology, effective improvements have been realized. As a result of continuing such improvements, the number of successful cases using low-output ultrasonic oscillation control has increased. We have been manufacturing and selling our original product: ultrasonic systems (sound pressure measurement analysis, oscillation control) since March 2021.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220622-0028bi0001_29.png

Surface modification technology using surface elastic waves of ultrasonic probes.

- Surface modification technology (stress relaxation and uniformity) through nonlinear oscillation control of original ultrasonic probes -

The Ultrasonic System Research Institute has made it possible to control the nonlinear propagation state of ultrasound by utilizing measurement, analysis, and control technologies related to the propagation state of ultrasound as the acoustic characteristics of the target object. As a result, we have developed and advanced technology to efficiently alleviate residual stress on the surface of components. This technology for alleviating surface residual stress improves fatigue strength against metal fatigue and achieves uniformity in various surface treatments. In particular, by considering the guided waves (surface elastic waves) of the target object in the setting and control of the ultrasonic propagation state, we have developed control methods and tools that realize effective dynamic changes in the target object as stimuli that include nonlinear phenomena. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic characteristics, can be utilized and developed as a distinctive inherent operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2989a.jpg

Consulting services for the manufacturing and evaluation technology of ultrasonic probes.

Technology for evaluating the dynamic characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed manufacturing and evaluation technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 900 MHz, based on the classification of ultrasonic propagation characteristics (acoustic characteristics). We can manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. This technology is available for consulting. If you are interested, please contact us via email. Propagation characteristics of ultrasonic probes: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (interaction between oscillation voltage and received voltage: analysis of power contribution rate) Note: "R" is a free statistical processing language and environment. - autocor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Manufacturing and sales of original ultrasonic systems (sound pressure measurement analysis, oscillation control).

Ultrasonic system combining "Ultrasonic Tester NA (10 MHz)" and "Ultrasonic Oscillator (20 MHz)"

An ultrasonic system that allows for easy measurement analysis and oscillation control. The Ultrasonic System Research Institute is publicly conducting experiments using a system that combines the "Ultrasonic Tester NA (recommended type)," which allows for easy measurement analysis of ultrasonic waves, and the "Ultrasonic Oscillation System (20 MHz)," which enables easy oscillation control of ultrasonic waves. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment Example: Function Generator Note: Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Autocorrelation) 2) Detection of Nonlinear Phenomena (Changes in Bispectrum) 3) Detection of Response Characteristics (Analysis of Impulse Response Characteristics) 4) Detection of Interactions (Analysis of Power Contribution Rates) Note: "R" Free Statistical Processing Language and Environment - autocor: Autocorrelation Analysis Function - bispec: Bispectrum Analysis Function - mulmar: Impulse Response Analysis Function - mulnos: Power Contribution Rate Analysis Function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220712bss.jpg

Providing technology for the manufacturing and development of ultrasonic sound pressure measurement probes.

Ultrasonic oscillation control probe enabling control of resonance phenomena and nonlinear phenomena - Surface modification technology (relaxation of surface residual stress) through nonlinear oscillation control.

The Ultrasonic System Research Institute provides consulting services for the manufacturing and development technology of an ultrasonic probe and sound pressure measurement analysis system that can measure ultrasonic propagation conditions from 0.1 Hz to 900 MHz. Ultrasonic sound pressure measurement analysis system (Ultrasonic tester: standard system) 1. Contents - One dedicated probe for measuring sound pressure of ultrasonic cleaners - One general-purpose ultrasonic measurement probe - One oscilloscope set - One set of analysis software, manuals, and various installation sets 2. Features (for standard specifications) * Measurement (analysis) frequency range Specification: from 0.1 Hz to 10 MHz * Ultrasonic oscillation Specification: from 1 Hz to 100 kHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours is possible * Simultaneous measurement of any two points * Measurement results displayed in graphs * Analysis software for time-series data included This is a measurement system using ultrasonic probes. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position and state, as well as elastic waves, to detect various acoustic performances.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Measurement, analysis, and evaluation techniques of ultrasound using a statistical approach.

To stabilize the effects of ultrasound, a statistical perspective is essential.

The Ultrasonic System Research Institute is developing technologies related to effective "measurement, analysis, and evaluation methods" using a <statistical approach> concerning the utilization of ultrasound. <About the Statistical Approach> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract thoughts or methods are developed. This is the characteristic of statistical mathematics. - From "Statistics in Science" edited by Hirotsugu Akaike <About Models> Models are constructed with the aim of effectively advancing understanding, prediction, and control regarding the subject. Building an accurate model is difficult, and the examination is always conducted in a form that appropriately "rounds off" the complexity of the subject. In this sense, the process of constructing or building a model requires statistical thinking. <About the Relationship Between Models and Current Systems> (Points to Consider When Reflecting) 1) It is necessary to consider that preconceived notions and experiences may not be correct. 2) To think about the essence of a model, I believe it is effective to utilize category theory.

  • Non-destructive testing
  • Other analytical equipment
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(10)

Technology for adding megahertz ultrasound to ultrasonic cleaners—dynamic control of ultrasound based on acoustic pressure measurement analysis.

Technology for adding megahertz ultrasound to ultrasonic cleaners—dynamic control of ultrasound based on acoustic pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Analysis and evaluation of ultrasonic sound pressure data (evaluation technology for ultrasonic propagation state based on interaction, response characteristics, and nonlinearity)

Analysis and evaluation of ultrasonic sound pressure data (evaluation technology for ultrasonic propagation state based on interaction, response characteristics, and nonlinearity)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe-based component inspection technology (application of nonlinear analysis techniques for sound pressure data)

Ultrasonic probe-based component inspection technology (application of nonlinear analysis techniques for sound pressure data)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Vibration measurement and analysis system using original ultrasonic probe (ultrasonic tester)

Vibration measurement and analysis system using original ultrasonic probe (ultrasonic tester)

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure data analysis technology (feedback analysis technology using multivariate autoregressive models)

Ultrasonic sound pressure data analysis technology (feedback analysis technology using multivariate autoregressive models)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Megahertz Ultrasonic Surface Elastic Wave Control Technology - Application of Original Ultrasonic Probe Manufacturing Technology -

Megahertz Ultrasonic Surface Elastic Wave Control Technology - Application of Original Ultrasonic Probe Manufacturing Technology -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Non-contact light touch sensor "HA-T401/HA-T520"

A non-contact light touch sensor "HA-T Series" that realizes "wanting to open in a narrower range and in a limited manner" based on the surrounding environment of automatic doors.

  • NEW
  • PRODUCT

The non-contact beam touch sensor "HA-T401/HA-T520" has a compact detection range, making it an ideal automatic door sensor for installation on automatic doors facing narrow corridors or busy streets. Depending on the application and installation location, you can choose between "non-vision mounting type" and "non-vision built-in type." 【Features】 ● With the beam touch sensor, you can open and close the automatic door simply by bringing your hand close without touching it, ensuring hygiene. ● Depending on the installation environment, such as single sliding or bi-parting doors, the detection range can be set in four configurations: left, center, right, and a total of 12 spots. ● Two types of activation row settings are available to reduce unnecessary opening and closing of the automatic door due to cross traffic, contributing to energy-saving effects. ● The touch switch and infrared sensor are integrated, allowing for a switch between beam touch and infrared sensor with a single model. 【Recommended for such locations!】 ☑ Entrance facing a busy corridor ☑ Counter or sign near the door ☑ Buildings facing narrow corridors ☑ Buildings that prioritize aesthetics ☑ Hospitals and facilities that consider hygiene ☑ Large facilities with many doors ◎ For more details, please download the materials or contact us.

Aug 07, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Aug 06, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The launch of the next-generation AI surveillance drone system "Grabee" has begun.

  • NEW
  • PRODUCT

Grabee is a next-generation monitoring solution equipped with new features specialized for forest fire and wildlife damage prevention, based on AI video analysis and location estimation technology developed at Guardian. In addition to the conventional location estimation function, it now includes flame identification and animal identification capabilities, enabling early detection and response to forest fires and wildlife damage. Furthermore, it supports mapping of fire areas and area calculations.

Aug 06, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
SysProBooth: Introducing the SysRobo and OMO-type Integrated Employment Management System.

The "HR EXPO" within the General Affairs, Human Resources, and Accounting Week [Tokyo] has successfully concluded with great enthusiasm.

  • NEW
  • COMPANY

Syspro Inc. exhibited at the "General Affairs, Human Resources, and Accounting Week [Tokyo] within the 'HR EXPO'" held at Tokyo Big Sight from June 25 (Wednesday) to June 27 (Friday), 2025. Thanks to everyone, we had many visitors and were able to conclude the event successfully. We would like to take this opportunity to express our deep gratitude to all the attendees and the organizers.

Aug 06, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.