iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35534items
    • Facilities
      Facilities
      56041items
    • Lighting and Interior
      Lighting and Interior
      17353items
    • Common materials
      Common materials
      36689items
    • Civil Engineering Materials
      Civil Engineering Materials
      9545items
    • Construction, work and methods
      Construction, work and methods
      27322items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29197items
    • IT/Software
      IT/Software
      33824items
    • others
      others
      76651items
    • Store and facility supplies
      Store and facility supplies
      4409items
    • Office and commercial supplies
      Office and commercial supplies
      11496items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6778items
    • Energy and Resources
      Energy and Resources
      11669items
  • Search for companies by industry

    • Information and Communications
      7219
    • others
      7040
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4660
    • Trading company/Wholesale
      3001
    • Other construction industries
      2448
    • Electrical equipment construction business
      641
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      465
    • Architectural design office
      360
    • retail
      346
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      277
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      250
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. - Optimization Technology for Cavitation and Acoustic Flow -
PRODUCT
  • Nov 25, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Nov 25, 2023

- Optimization Technology for Cavitation and Acoustic Flow -

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a technology to utilize (control) "nonlinear phenomena related to the generation of harmonics in ultrasound" by analyzing ultrasonic sound pressure measurement data (bispectral analysis, etc.) according to specific purposes. With this technology, when using multiple ultrasonic transducers of different frequencies, it becomes possible to set (manage) the propagation state of ultrasound influenced by harmonics. Therefore, it enables the realization of appropriate or effective combinations of frequencies. This is very effective as it allows for the detection and confirmation of effective propagation states for cleaning, surface modification, and the promotion of chemical reactions. Furthermore, by combining the control of standing waves with liquid circulation control, dynamic control becomes possible to change the effects of cavitation and acceleration (acoustic flow) according to the intended purpose. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)
Optimization technology for cavitation and acoustic flow
Optimization technology for cavitation and acoustic flow
Optimization technology for cavitation and acoustic flow
Optimization technology for cavitation and acoustic flow
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

キャビテーションと音響流のプロセスVer2.pdf[4525562]

Related Links

Ultrasound and Fine Bubbles
Cleaning technology using ultrasound and fine bubbles (microbubbles)
How to Install an Ultrasonic Transducer
Ultrasound control technology through the installation method of ultrasonic transducers
Cavitation and Acoustic Flow
Control technology for cavitation and acoustic flow

Related product

1249193a32.jpg

Surface treatment technology using dynamic control of ultrasound and fine bubbles.

Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the bubble size of the dissolved gas due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz (1-20 MHz) ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20191129-0001ss.jpg

Surface treatment technology using fine bubbles and ultrasound.

Relaxation and uniform treatment of surface residual stress using ultra-fine bubbles and megahertz acoustic flow control.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the size of the bubbles formed by cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Turbid water and muddy water treatment machines
  • Other measuring instruments
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_351600.jpg

Ultrasonic cleaning machine utilizing acoustic flow control with fine bubbles.

A technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls ultrasonic acoustic flow.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing fine bubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: An ultrasonic transducer subjected to surface modification treatment using ultrasonic waves and fine bubbles. 2: An ultrasonic dedicated tank subjected to surface modification treatment using ultrasonic waves and fine bubbles. 3: A degassing and fine bubble (microbubble) generation liquid circulation system. 4: An optimization control system for ultrasonic waves and liquid circulation controlled by a control device. 5: An acoustic pressure management system using an ultrasonic tester. Note: The tank, transducer, and tools can be adjusted for acoustic characteristics through aging treatment. *Features This is an effective cleaning device using a dedicated ultrasonic tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank become insufficient. (The standard tank is modified for surface treatment using ultrasonic waves and fine bubbles.) Ultrasonic waves (cavitation and acoustic flow) are controlled according to the target and purpose of cleaning, stirring, and surface modification.

  • pump
  • Drainage and ventilation equipment
  • Water Treatment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3543.jpg

Consulting for the development of an ultrasonic cleaning system based on sound pressure data analysis.

Ultrasonic cleaning system that achieves ultrasonic control tailored to the purpose.

This is an effective device using a dedicated ultrasonic tank (original manufacturing method). Due to the high efficiency of ultrasonic utilization, standard tanks lack sufficient strength and durability. Depending on the target and purpose, multiple ultrasonic waves and a degassing fine bubble generation liquid circulation device are controlled based on sound pressure measurement analysis for cleaning, stirring, and surface modification. We propose various combinations and usage (control) methods. The key point is to achieve an ultrasonic propagation state tailored to the target, focusing on the "dissolved oxygen concentration distribution" and "liquid circulation" within the dedicated tank. << Degassing Fine Bubble (Microbubble) Generation Liquid Circulation Device >> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the degassing liquid circulation device. 3) As the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) smaller than 20μ are generated. The above describes the state of the degassing microbubble generation liquid circulation device.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1726.jpg

Ultrasonic cleaning machine manufacturing and development consulting

Ultrasonic cleaning machine using a degassed fine bubble (microbubble) generation liquid circulation device.

The Ultrasonic System Research Institute provides consulting services for the manufacturing and development methods of ultrasonic cleaning machines using a "degasified fine bubble (microbubble) generation liquid circulation device" that can efficiently control ultrasonic waves. Ultrasonic Cleaning Machine (Degasified Fine Bubble Generation Liquid Circulation System) --Ultrasonic Cleaning System KT0600K-- 1) Cleaning Tank Material: SUS304 (t = 3.0 mm) Dimensions (internal): W530 × D530 × H370 mm 2) Liquid Circulation Degasified fine bubble generation liquid circulation system Nominal flow rate: 12-30 L/MIN 3) Ultrasonic (Power Supply: AC 100V) MU-300 Transducer Size: 260 × 150 × 90 mm Oscillator Size: 320 × 420 × 145 mm Frequency 1) 28 kHz Output: 300W (MAX) Frequency 2) 40 kHz Output: 300W (MAX) Frequency 3) 72 kHz Output: 300W (MAX)

  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231231aa.png

Consulting services based on the classification technology of ultrasonic propagation phenomena.

Ultrasonic control technology based on the classification of nonlinear phenomena in which ultrasonic vibrations propagate.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibration propagation by analyzing measurement data of ultrasonic propagation states using bispectral analysis. The method developed in this instance estimates the linear and nonlinear resonance effects based on the dynamic characteristics (changes in nonlinear phenomena) of the main frequencies (power spectrum) related to the ultrasonic propagation state. From previous data analysis, we have been able to classify effective utilization methods into the following four types: 1: Linear type 2: Nonlinear type 3: Mixed type 4: Variable type There are numerous successful cases of device development and control settings based on each of the above types. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: The following tools will be used for analysis. Note: "R" is a free statistical processing language and environment.

  • Other Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Megahertz ultrasonic system (cleaning, stirring, processing, surface treatment, etc.)

Application of sweep oscillation control technology to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states above 1-700 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for several tons of target objects even in a 1000-liter water tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance phenomena.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2771.jpg

Megahertz ultrasonic cleaner (consulting support for utilization technology)

Sound flow control technology

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) from 1 to 100 MHz by utilizing a megahertz ultrasonic oscillation control probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled even in a 1000-liter tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic model of ultrasound. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the propagation characteristics of ultrasound depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Consulting for a degassed fine bubble generation liquid circulation system.

Control technology for acoustic flow (the main cause of ultrasonic effects: nonlinear phenomena) using ultrasound and fine bubbles.

The Ultrasonic System Research Institute has developed a method (system) for the <analysis and evaluation> of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We provide consulting for a degassing microbubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable state, we conduct consulting to add the degassing microbubble generation liquid circulation system to specific tanks present on-site. 1: Explanation of principles 2: Specific proposals tailored to the cleaning machine (device) 3: Explanation of know-how 4: Explanation of verification methods, adjustment methods, and maintenance methods Development of nonlinear vibration control technology using fine bubbles and megahertz ultrasound Regarding this technology, we provide consulting as "vibration measurement technology utilizing ultrasound." Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00093.jpg

Optimization Technology for Ultrasound - Optimization Technology for Resonance Phenomena and Nonlinear Phenomena -

Analysis of sound pressure measurement data (autocorrelation, power spectrum, bispectrum, power contribution rate, impulse response, etc.) evaluation and technology.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that enable control of resonance and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). In contrast to existing control technologies, this technology utilizes new measurement and evaluation parameters (note) related to the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic propagation states of ultrasound tailored to specific applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

An ultrasonic system that allows for easy measurement analysis and oscillation control.

--- Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) ---

The Ultrasonic System Research Institute manufactures and sells a system that combines the "Ultrasonic Tester NA (recommended type)," which allows for easy measurement and analysis of ultrasonic waves, and the "Ultrasonic Oscillation System (20MHz)," which facilitates easy control of ultrasonic oscillation. We propose system configurations (custom-made ultrasonic probes) tailored to the intended use (price and performance: cleaning, processing, stirring, inspection, etc.). Original products: Ultrasonic System (sound pressure measurement and analysis, oscillation control, 10MHz type) Model number: US-2022xxxx System Overview (Standard System): - Ultrasonic Tester NA 10MHz type - Oscillation System 20MHz type Ultrasonic Probe: Outline Specifications Measurement Range: 0.01Hz to 100MHz Oscillation Range: 1kHz to 25MHz Propagation Range: 1kHz to over 900MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation Equipment Example: Function Generator Ultrasonic Propagation Characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Analysis and prediction system
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasonic oscillation control system using an original ultrasonic probe.

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

The Ultrasonic System Research Institute manufactures and sells an "Oscillation System (20MHz)" that allows for easy control of megahertz ultrasonic oscillation. System Overview (Ultrasonic Oscillation System (20MHz)) Contents (20MHz Type) - Two ultrasonic oscillation probes - One set of function generator - One set of operation manual (USB memory) Features (20MHz Type) - Ultrasonic oscillation frequency Specification: 20kHz to 25MHz (or 24MHz) - Output range: 5mVp-p to 20Vp-p - Sampling rate: 200MSa/s (or 250MSa/s) This system utilizes commercially available function generators. We will propose a quoted price with a function generator set according to your needs. Standard Reference Example Oscillation System 20MHz starting from 80,000 yen November 2024: Development of megahertz flow-type ultrasonic technology November 2024: Development of ultrasonic sound pressure data analysis and evaluation technology December 2024: Development of nonlinear oscillation control technology for ultrasonic probes January 2025: Development of megahertz flow-type ultrasonic system

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

<Dynamic System of Ultrasonics> - Optimization of Liquid Circulation -

Control technology for acoustic flow (nonlinear phenomena) based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed a system that applies technology to measure and analyze the state of ultrasonic waves propagating in the liquid within an ultrasonic tank, setting and controlling the propagation state of ultrasonic waves according to the effects of the tank's structure, strength, manufacturing conditions, and the state of liquid circulation. The liquid circulation within the ultrasonic tank is captured as a system, and the primary purpose of many ultrasonic (tank) applications is to predict or control the sound pressure changes of the liquid inside the tank. However, numerous issues have been pointed out in many implementations due to discrepancies between theory and practice. In response to such cases: 1) The removal of obstacles involves the use of statistical data analysis methods, which is the technology for measuring and analyzing ultrasonic propagation states. 2) Based on the results of data analysis related to the subject, the characteristics of the subject are confirmed, which is the technology for detecting the acoustic properties related to the surface elastic waves of the object. 3) Progressing to control realization through characteristic confirmation involves technology for controlling nonlinear phenomena. By employing the above methods, the utilization state of ultrasonic waves has been improved for efficient use, and there are numerous examples of original systems that have realized the intended use of ultrasonic waves.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1045.jpg

Small pump and ultrasonic control technology using an ultrasonic probe.

Development of "Control Technology for Nonlinear Phenomena" Using a Small Pump

The Ultrasonic System Research Institute has developed "ultrasonic control technology" that dynamically controls nonlinear phenomena related to ultrasonic propagation by utilizing a small pump for liquid circulation. Nonlinear phenomena are evaluated through analysis using an ultrasonic tester. The complex changes in ultrasound (such as ultrasonic cleaners, ultrasonic probes, etc.) are confirmed through time-series data analysis of sound pressure from ultrasonic oscillation and reception, identifying various interactions. Based on the confirmation of these interactions, the oscillation control conditions using ultrasonic probes are optimized, achieving a dynamic ultrasonic control system tailored to specific objectives. In practical applications, such as ultrasonic cleaning, the ON/OFF control (or control of flow rate and velocity, etc.) of the current liquid circulation device is optimized by considering the ultrasonic propagation characteristics related to the installation state of the device and the surface elastic waves of the target object, including the output, oscillation frequency, and control conditions of the ultrasound. In particular, by utilizing the vibration characteristics of the pump to alternately circulate liquid and gas, new nonlinear effects of ultrasound and microbubbles are realized.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Flow and Shape of Ultrasonic Cleaners: Constructal Law

Dynamic control technology for ultrasonic cleaning machines.

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology utilizing the "Constructal Law" related to flow and shape. <References> 1) On Vibration From the Royal Institution's 133rd lecture "Vibration" I intend to describe almost all of the important fields of mechanical engineering here. [Author] Richard B. Bishop [Translator] Hidetaro Nakayama, Kodansha (1981, B-471) 2) Flow and Shape The evolution of all shapes is governed by the "Constructal Law," which aims to improve flow! [Authors] Adrian Bejan, J. Peder Zane [Translator] Hiroyuki Shibata, [Commentator] Shigeo Kimura, Kinokuniya (2013) 3) How Cybernetics Was Born [Author] Norbert Wiener [Translator] Yasuo Shizume, Misuzu Shobo (1956) Using the above as references and hints, we have organized the technology for measuring and utilizing "nonlinear effects" in ultrasonic propagation phenomena according to the "Constructal Law," which aims to improve flow, culminating in ultrasonic cleaning technology.

  • pump
  • Drainage and ventilation equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7125cc.jpg

Technology for controlling nonlinear vibration phenomena of ultrasound.

Evaluation technology for ultrasonic propagation conditions based on the measurement and analysis of sound pressure data.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing two function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation (sweep) with two different waveforms. Note: Nonlinear (resonance) phenomena By generating higher harmonics (above the 10th order) through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic control of surface elastic wave changes according to the intended use. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(18)

Ultrasonic cleaning machine using a degassed fine bubble generation liquid circulation device.

Ultrasonic cleaning machine using a degassed fine bubble generation liquid circulation device.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Effects of Megahertz Ultrasonic Waves (Improvements in Ultrasonic Cleaners)

Effects of Megahertz Ultrasonic Waves (Improvements in Ultrasonic Cleaners)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology to control nonlinear phenomena of ultrasound (acoustic flow).

Technology to control nonlinear phenomena of ultrasound (acoustic flow).

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

A method for controlling an ultrasonic transducer according to the intended use of ultrasound.

A method for controlling an ultrasonic transducer according to the intended use of ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Precision cleaning technology using megahertz ultrasonic waves - Case study in the plating process.

Precision cleaning technology using megahertz ultrasonic waves - Case study in the plating process.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic control technology Ver3 based on sound pressure measurement and analysis.

Ultrasonic control technology Ver3 based on sound pressure measurement and analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System (20 MHz) Catalog

Ultrasonic Oscillation System (20 MHz) Catalog

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Seminar Text: "Basics of Ultrasonic Cleaning and Case Studies/ Troubleshooting"

Seminar Text: "Basics of Ultrasonic Cleaning and Case Studies/ Troubleshooting"

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization technology for ultrasound based on the classification of ultrasonic propagation characteristics - Control of nonlinear phenomena.

Optimization technology for ultrasound based on the classification of ultrasonic propagation characteristics - Control of nonlinear phenomena.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for analyzing time series data through ultrasonic sound pressure measurement (R language) — Feedback analysis using autoregressive models —

Technology for analyzing time series data through ultrasonic sound pressure measurement (R language) — Feedback analysis using autoregressive models —

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation technology for ultrasonic transducers

Surface residual stress relaxation technology for ultrasonic transducers

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena Ver2

Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Control technology based on the classification of ultrasound - Optimization of resonance phenomena and nonlinear phenomena -

Control technology based on the classification of ultrasound - Optimization of resonance phenomena and nonlinear phenomena -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for Controlling Low-Frequency Resonance Phenomena and High-Frequency Nonlinear Phenomena - Ver3

Technology for Controlling Low-Frequency Resonance Phenomena and High-Frequency Nonlinear Phenomena - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Acoustic Flow (Nonlinear Phenomena of Ultrasound) Control Technology - Ver4

Acoustic Flow (Nonlinear Phenomena of Ultrasound) Control Technology - Ver4

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Non-contact light beam touch sensor 'HA-T401'

Recommended for infection control! Introduction of non-contact sensors for facilities.

  • NEW
  • COMPANY

In recent times, there has been a growing interest in infection control measures and facility hygiene management. Our company offers non-contact sensor products that are recommended for commercial facilities, food factories, and nursing and caregiving facilities. 【Sensors for Automatic Doors】 ● Light Touch Sensor HA-T401 … When you wave your hand in front of the automatic door, the sensor detects the movement and opens or closes the door. This is recommended for making doors with touch switches non-contact. ● Hand Wave Sensor PF-R5, PF-U2, DHS-1 … Opens and closes the automatic door by waving your hand in front of the sensor. ● Foot Switch PF-01S/01D/03S/05 … Opens and closes the automatic door by placing your foot in the opening. 【Access Control System】 ● Face Recognition + Unmanned Temperature Measurement DS Series … Allows for face recognition along with mask detection and body temperature measurement simultaneously. ● Automatic Disinfectant Spray Dispenser PHW-03B … Automatically sprays disinfectant when you wave your hand in front of the sensor. 【Nursing and Care Sensors】 ● Infrared Bed Exit Sensor "Just Place It Pole-kun" … This bed exit sensor is installed next to the bed and notifies via nurse call when the subject enters the detection range. ◎ For more details, please download the catalog or contact us.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
When the sensor detects the car, the rotating light will turn on.

Ideal for entrances and exits of parking lots and stores! Alerts pedestrians of vehicle departures with the light from the rotating lamp! Here is a proposal for a departure warning sensor! Free catalog giveaway.

  • NEW
  • CATALOG

[To the owners of parking lots and parking lot construction companies] "I'm worried about not colliding with pedestrians when exiting the parking lot..." Among vehicle entrances to parking lots, stores, residences, and factories, particularly at entrances facing sidewalks or roadways, there is a risk of dangerous incidents such as collisions with pedestrians or between vehicles. To alleviate such concerns, Hotron proposes a [Vehicle Exit Warning Sensor] that detects vehicle departures using various sensors and alerts the surrounding area with LED lights and buzzers. The system consists of a simple configuration of "sensor" + "controller" + "switching power supply (24V)" + "LED rotating light." *Please note that a separate control panel is required to include the controller and switching power supply (24V) when using the exit warning system. *We kindly ask customers to arrange for the switching power supply (24V), LED rotating light, control panel, circuit breakers, etc. Since it can be retrofitted, it can also be used for existing parking lot entrances. We hope this will contribute to safer vehicle passage for everyone. ◎ For more details, please contact us or download the catalog.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Image of wireless set usage

Solve your problems with wired bed exit sensors by connecting a wireless set linked to the nurse call system!

  • NEW
  • PRODUCT

Do you have any concerns or requests regarding wired bed exit sensors? × Tangling or tripping over wired cables × Cable disconnection or damage × Worrying about forgetting to turn the switch back on after temporarily stopping the sensor. × Wanting to be notified of bed exits even from a location far from the nurse call outlet. Such concerns can be resolved simply by connecting our wireless nurse call linked set to the sensor! Our wireless nurse call linked set allows you to connect bed exit sensors like "Ugo-kun," "Foldable Thin Matta-kun," "Ayumi-chan," and "Just Place Pole-kun" to transmitters and receivers, reducing wiring around the bed area, alleviating concerns about tripping or falling due to cables, and contributing to a tidier work environment. Furthermore, it enables the use of bed exit sensors even from locations far from the nurse call outlet, allowing for more flexible equipment placement.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
A vehicle detection sensor evolved into a round shape, with a load capacity 10 times greater (compared to our company).

A vehicle-specific sensor that is less affected by the natural environment and can be installed on rebar and steel plates!

  • NEW
  • PRODUCT

The "HM-S6" is an embedded park sensor that detects vehicles through changes in magnetic flux and responds to various situations from passing to stationary vehicles. It can be used for the opening and closing of input doors at waste treatment plants, as well as for gates that vehicles pass through and outdoor parking applications. It can also be installed on rebar and steel plates. 【Features】 ■ Resistant to the effects of natural environments such as rain, snow, temperature changes, and geomagnetism ■ Protection rating IP68 reduces the risk of water ingress ■ Ten times the load capacity compared to conventional embedded park sensors (based on our comparison) ■ Can distinguish between vehicles even when they pass continuously ■ Can be installed on rebar and steel plates *For more details, please refer to the PDF document or feel free to contact us.

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 簡単なのに、高機能 CMSもMAもこれ1つ リード獲得 商談創出 ferrer One
  • 検査・点検業務のDX化 現場に合わせたカスタマイズ See-Note 点検票・帳票の電子化 現場のペーパーレス化 社内情報の効率化 インフラ点検 製造機器点検 ビル・施設管理 ※導入実績
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.