iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35541items
    • Facilities
      Facilities
      56657items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37004items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27655items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31783items
    • others
      others
      84503items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11462items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7197
    • others
      6979
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2456
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Product/Service List
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration

超音波システム研究所

EstablishmentAugust 2008
capital500Ten thousand
number of employees2
addressTokyo/Hachioji-shi/2-25-3 Myojincho, SOHO Plaza Keio Hachioji, Room 303
phone090-3815-3811
  • Official site
last updated:Jan 05, 2025
超音波システム研究所logo
  • Contact this company

    Contact Us Online
  • Before making an inquiry

    Download PDF
  • Company information
  • Products/Services(153)
  • catalog(598)
  • news(582)

超音波システム研究所 List of Products and Services

  • category

46~90 item / All 153 items

Displayed results

class="retina-image"

Technology that utilizes (optimizes) multiple different frequency "ultrasonic transducers."

Based on sound pressure measurement analysis, ultrasonic optimization technology allows for the efficient and stable use of ultrasound tailored to specific purposes.

The Ultrasonic System Research Institute has developed a technology that utilizes "ultrasonic transducers" of multiple different frequencies. This technology, in addition to standing wave control technology, adjusts the output of each ultrasonic transducer to vary the nonlinear effects of cavitation and acceleration according to specific purposes. By using ultrasonic transducers with a frequency of 40 kHz and an output of 50-600 W, it is possible to disperse a 1-millimeter diameter metal tube into a 1-micron state, as well as to clean it without causing damage. Through original measurement and analysis technology for ultrasonic propagation states, we are confirming various ultrasonic utilization technologies tailored to the unique characteristics of the transducers. This is a new ultrasonic technology that, including the general effects of ultrasonic dynamic characteristics, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, chemical reaction experiments, and more. Ultrasonic propagation characteristics: 1) Vibration modes (changes in self-correlation) 2) Nonlinear phenomena (changes in bispectrum) 3) Response characteristics (analysis of impulse response) 4) Interactions (analysis of power contribution rates)

  • pump

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Original ultrasonic probe megahertz ultrasonic oscillation control system

--- Ultrasonic Control System in Megahertz through Control of Nonlinear Phenomena in Ultrasound ---

The Ultrasonic System Research Institute has developed a technology that utilizes "the technology to control nonlinear phenomena of ultrasound" to "control ultrasonic stimulation according to its intended purpose." This technology controls ultrasound (cavitation and acoustic flow) tailored to specific objectives by measuring and confirming the interactions within containers, using ultrasonic control via a megahertz ultrasonic oscillation probe. Note: Ultrasonic Control By setting the oscillation conditions for sweep oscillation and pulse oscillation using two types of nonlinear resonant ultrasonic oscillation probes, it dynamically controls high-frequency propagation states above 30 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). Note: Ultrasonic Control "Precision Cleaning Example" Sweep Oscillation: 70 kHz – 15 MHz, 15 W Pulse Oscillation: 13 MHz, 8 W Note: Ultrasonic Control "Nano-Level Stirring Example" Sweep Oscillation: 880 kHz – 22 MHz, 12 W Pulse Oscillation: 14 MHz, 10 W In particular, the dynamic characteristics of harmonics through acoustic flow control enable reactions and responses at the nano level. This has been applied and developed from examples of dispersing metal powder to nanosize.

  • Other Software
  • Non-destructive testing
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Flow and Shape of Ultrasonic Cleaners: Constructal Law

Dynamic control technology for ultrasonic cleaning machines.

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology utilizing the "Constructal Law" related to flow and shape. <References> 1) On Vibration From the Royal Institution's 133rd lecture "Vibration" I intend to describe almost all of the important fields of mechanical engineering here. [Author] Richard B. Bishop [Translator] Hidetaro Nakayama, Kodansha (1981, B-471) 2) Flow and Shape The evolution of all shapes is governed by the "Constructal Law," which aims to improve flow! [Authors] Adrian Bejan, J. Peder Zane [Translator] Hiroyuki Shibata, [Commentator] Shigeo Kimura, Kinokuniya (2013) 3) How Cybernetics Was Born [Author] Norbert Wiener [Translator] Yasuo Shizume, Misuzu Shobo (1956) Using the above as references and hints, we have organized the technology for measuring and utilizing "nonlinear effects" in ultrasonic propagation phenomena according to the "Constructal Law," which aims to improve flow, culminating in ultrasonic cleaning technology.

  • pump
  • Drainage and ventilation equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development and manufacturing technology of ultrasonic propagation tools based on the control of surface acoustic wave propagation.

We provide consulting services for the development methods of ultrasonic propagation tools tailored to various usage purposes. --Application of sound pressure measurement and analysis technology--

The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 900 MHz, and has created new ultrasonic propagation tools. This technology is available for consulting. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we can achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (such as glass containers), ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasonic system (cleaning, stirring, processing, surface treatment, etc.)

Application of sweep oscillation control technology to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states above 1-700 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for several tons of target objects even in a 1000-liter water tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance phenomena.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Proposal for a processing method using megahertz ultrasonic oscillation control.

Consulting services for processing technology utilizing megahertz ultrasonic oscillation control - Utilizing nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute provides consulting services for ultrasonic processing technology using its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control). In response to the current state of ultrasonic processing, we propose and implement ultrasonic enhancement and improvement methods based on sound pressure measurement and analysis. Specifically, we will discuss ultrasonic enhancements through the measurement and confirmation of processing machines using our original product: Ultrasonic Tester NA (recommended type), which allows for easy measurement and analysis of ultrasonic waves. In line with the ultrasonic enhancements, we propose the use of our original product: Ultrasonic Oscillation System (1 MHz, 20 MHz), which enables easy oscillation control of ultrasonic waves.

  • others
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic probe oscillation method (consulting support for control know-how)

Ultrasonic probe-based sweep oscillation system - a technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed a new control technology for ultrasonic probes using original technology. This is an application technology for measurement systems using the new ultrasonic probe. We provide consulting services for the development, manufacturing, and control methods of dedicated ultrasonic probes tailored to specific purposes. Regarding the characteristics of piezoelectric elements, we develop and manufacture original ultrasonic probes based on analyses that consider elastic wave propagation and various vibration states (modes). For measurements, the probes can be connected to an oscilloscope for use. For oscillation, they can be connected to a function generator. By performing feedback analysis of sound pressure measurement data, it becomes possible to quantify and evaluate nonlinear ultrasonic phenomena (acoustic streaming) and cavitation effects. The ultrasonic probes are "made-to-order" based on the confirmed intended use.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation (sweep oscillation, pulse oscillation, ...) system

Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology utilizing nonlinear vibration phenomena based on surface acoustic waves. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, jigs, objects, etc.), the desired ultrasonic propagation state can be achieved through oscillation control. By setting the oscillation conditions (waveform, output, control, etc.) with an original nonlinear resonant ultrasonic oscillation probe, we optimize high-frequency propagation states above 300 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). This technology is an efficient method for utilizing low-output ultrasonic oscillation. The key point is the setting of various parameters utilizing the characteristics of a discrete function generator through digital control. By using the nonlinear resonant ultrasonic oscillation probe, the control range of sound pressure levels due to resonance phenomena is greatly expanded, which is significantly different from conventional sound pressure levels caused by resonance phenomena. Therefore, optimization of control settings based on sound pressure measurement analysis is necessary to avoid phenomena such as damage or destruction.

  • Special Construction Method
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic system using a function generator

Ultrasonic oscillation (sweep oscillation) system for controlling nonlinear phenomena

The Ultrasonic System Research Institute has developed a technology to control the nonlinear vibration phenomena of surface elastic waves based on the acoustic characteristics of original ultrasonic probes. The key point is the setting of sweep oscillation conditions using two ultrasonic probes (essentially, it cannot be controlled with just one probe for ultrasonic oscillation control. By combining the oscillation settings of the two probes, the occurrence of resonance phenomena and nonlinear phenomena can be controlled). Resonance phenomena and nonlinear phenomena can be controlled within a frequency range tailored to the intended use. In particular, when strong stimulation is required, this is achieved by utilizing low-frequency resonance phenomena (e.g., breaking glass). When high-frequency stimulation is needed, this is achieved by utilizing high-frequency nonlinear phenomena (e.g., 700 MHz stimulation).

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development technology for control systems based on the original ultrasonic model.

To stabilize the effects of cavitation, a statistical perspective is essential — a technology to optimize nonlinear ultrasonic phenomena according to specific purposes.

<Regarding the Creation of Logical Models> (Using Information Quantity Criteria) 1) Based on various fundamental technologies, clearly recognize the "information data group," DS = (D1, D2, D3), related to the subject, consisting of: D1 = Objective knowledge (theory supported by academic logic) D2 = Empirical knowledge (results obtained so far) D3 = Observational data (current state) and create multiple model proposals from its organizational use. 2) Understand statistical thinking as a method of realizing information acquisition through the composition of the information data group (DS) and the repeated proposal and verification of models based on it. 3) Determine the optimal model by comparing various models using evaluation methods such as AIC. 4) Construct ultrasonic devices and systems based on the created models. 5) Considering time and efficiency, the following responses are proposed: 5-1) Taking into account the "logical model creation matters," create "intuitive models" for multiple people to examine. 5-2) Modify and review the models based on actual data and new information. 5-3) Enter into specific discussions about devices and systems based on models that the review members can agree upon.

  • others
  • Scientific Calculation and Simulation Software
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development of ultrasonic cleaning technology using sweep oscillation and pulse oscillation.

- Combination technology of pulse oscillation and sweep oscillation -

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probes to ultrasonic cleaners. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states for precision cleaning, processing, and stirring. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is to confirm the ultrasonic propagation characteristics of the target object, which is important for setting the oscillation conditions of the ultrasonic oscillation control probe as an optimization for the system's vibration modes related to sweep oscillation and pulse oscillation, serving as a control method for the original nonlinear resonance phenomenon. It is believed that this technology can be utilized in various fields, and proposals are being made in various consulting services.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic Oscillation Control System (25MHz 2ch 200MSa/s)

- Nonlinear control system of megahertz ultrasound using an original ultrasonic oscillation control probe -

The Ultrasonic System Research Institute has developed the "Ultrasonic Oscillation Control System 2023," which allows for easy control of megahertz ultrasonic oscillation in combination with a new function generator. System Overview (Ultrasonic Oscillation System (25MHz 2ch 200MSa/s)) Contents: - Two ultrasonic oscillation probes - One set of function generator (DG1022Z 25MHz 2ch 200MSa/s) - One set of operation manual (USB memory) Propagation characteristics of the ultrasonic probes: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) The following tools will be used for analysis: "R," a free statistical processing language and environment - autocor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for evaluating various interactions of ultrasound - Power contribution analysis of sound pressure data.

- Feedback Analysis Using Autoregressive Models: Analysis of Power Contribution Rates - Effects of Tanks and Ultrasound, Cleaning Materials and Ultrasound, Adjacent Tanks, ...

Development of technology to measure, analyze, and evaluate the interaction of ultrasonic vibrations -- Feedback analysis of sound pressure data: Analysis of power contribution rate -- The Ultrasonic System Research Institute has developed technology to measure, analyze, and evaluate various interactions by analyzing time-series data obtained from ultrasonic sound pressure measurements. As a result, this has evolved into technology that optimizes ultrasonic utilization conditions based on the evaluation of interactions. Specifically, there are the following examples: 1) Optimization of selection criteria for ultrasonic oscillation frequency and output level 2) Optimization of ultrasonic oscillation control conditions 3) Optimization regarding the installation of tanks and ultrasonic (transducers) 4) Optimization of liquid circulation devices and control conditions 5) Optimization of design conditions for tanks and ultrasonic systems 6) Optimization of cleaning solutions, detergents, solvents, etc. 7) Optimization with adjacent tanks, jigs, etc. It is possible to develop original ultrasonic systems tailored to specific purposes.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Analysis of sound pressure measurement of ultrasonic equipment (autocorrelation, bispectrum, etc.)

Application of feedback analysis using multivariate autoregressive models.

Features (in the case of standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 100 MHz * Surface vibration measurement is possible * Continuous measurement for 24 hours is possible * Simultaneous measurement of any two points * Measurement results displayed in graphs * Utilization of original analysis software for time series data This is a measurement system using ultrasonic probes. Measurements are conducted by attaching the ultrasonic probe to the target object. For the measured data, considering position and state along with elastic waves, various acoustic performances are detected. Consulting services are available for sound pressure measurement analysis technology: 1) Operation of measurement equipment 2) Operation of analysis software 3) Evaluation methods for analysis results <Concept of Analysis: Statistical Thinking> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete elements, abstract thoughts or methods are developed, which is the characteristic of statistical mathematics. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic control system using ultrasonic probes

Control system using ultrasonic oscillation probe and receiving probe.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control system that applies acoustic characteristic analysis and evaluation technology related to the manufacturing of original products: ultrasonic oscillation probes. This is a new application system for cleaning, modification, inspection, and more, utilizing ultrasonic waves. It is also possible to apply control through the combination of low-frequency vibrations and sounds. Developed from an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model, it serves as an applied system technology. The key point is the utilization method of surface elastic waves. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object (Note 1), it is important to address this as an original nonlinear resonance phenomenon (Note 2). Note 1: Propagation characteristics of ultrasonic waves - Nonlinear characteristics - Response characteristics - Fluctuation characteristics - Effects due to interactions Note 2: Original nonlinear resonance phenomenon This occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena, resulting in ultrasonic vibration resonance phenomena.

  • Other measuring instruments
  • others
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Surface residual stress relaxation treatment technology for ultrasonic transducers (consulting support)

Relaxation Effect of Residual Stress on the Surface of Ultrasonic Transducers — Oscillation of Ultrasonic Transducers Using a Function Generator —

The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to ultrasonic propagation to publish technology that alleviates surface residual stress in ultrasonic transducers using ultrasound and fine bubbles. With this technology to relieve surface residual stress, it has become possible to improve fatigue strength against metal fatigue. As a result, the effectiveness of various components, including ultrasonic tanks, has been demonstrated.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for adjusting the ultrasonic propagation characteristics of ultrasonic elements (piezoelectric elements).

Development technology for ultrasonic probes and ultrasonic oscillation control systems - Aging treatment of piezoelectric elements.

The Ultrasonic System Research Institute has developed a technology to adjust the ultrasonic propagation characteristics of ultrasonic elements (piezoelectric elements) based on measurement, analysis, and evaluation results regarding the propagation state of ultrasound, utilizing ultrasonic systems (sound pressure measurement, oscillation control). To utilize the surface acoustic waves of ultrasonic elements (piezoelectric elements) according to specific purposes, special surface treatments are performed on the element surface. It allows for adjustments to the sound pressure level and frequency range of the propagating ultrasound. By realizing dynamic ultrasonic propagation control through the combination of ultrasound (oscillation control) and surface acoustic waves, it has evolved into an adjustment technology based on the characteristics derived from the analysis of sound pressure data. The key point is the optimization of oscillation conditions (waveform, output, frequency, variations, etc.) that enables efficient control of nonlinear phenomena caused by surface acoustic waves. As specific technologies mentioned above, we provide consulting services for system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with tanks and tools, tailored to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

  • Scientific Calculation and Simulation Software
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Sweep oscillation control system below 1 MHz

Ultrasonic oscillation control system using a commercial function generator and ultrasonic oscillation probe.

The Ultrasonic System Research Institute has published a method for applying the "Ultrasonic Oscillation System (1 MHz)," which allows for easy control of ultrasonic oscillation, through timer control. Specific examples: 1) Preventing the deterioration of machining oil by irradiating it with ultrasound at night. 2) Improving quality through ultrasonic irradiation on NC machines. 3) Irradiating shelves that store metal and resin parts with ultrasound (surface modification). 4) Improving fluidity and uniformity of concentration by irradiating plating solutions, cleaning solutions, solvents, etc., with ultrasound. 5) Enhancing welding quality by irradiating welding machines with ultrasound. 6) Relieving surface residual stress by irradiating brazing devices and bending processing devices with ultrasound. 7) Improving cleaning levels by irradiating ultrasonic cleaning machines with ultrasound. ... ... 19) Others: 1: Combined use with various vibrations (e.g., motors, etc.). 2: Maintenance through ultrasonic irradiation during holidays (2-3 hours). 3: Aging treatment through ultrasonic irradiation. ... ... Combined use with fine bubbles. Combined oscillation control of multiple ultrasonic sources. Use of ultrasonic propagation tools.

  • Non-destructive testing
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Surface treatment technology using fine bubbles and ultrasound.

Relaxation and uniform treatment of surface residual stress using ultra-fine bubbles and megahertz acoustic flow control.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the size of the bubbles formed by cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Other measuring instruments
  • Manufacturing Technology
  • Turbid water and muddy water treatment machines

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic probe sweep oscillation control technology

Development technology of original ultrasonic systems - technology to control nonlinear phenomena of ultrasound -

The Ultrasonic System Research Institute has developed a technology for controlling the propagation of ultrasound through sweep oscillation using ultrasonic probes. Based on the propagation characteristics of the ultrasonic oscillation control probes, we set the conditions for sweep oscillation for each ultrasonic probe according to the intended use and interaction. By considering the vibration modes of the target objects, devices, tanks, and tools, it becomes possible to control low-frequency resonance phenomena through sweep oscillation conditions tailored to the system's vibration system. Even with an output of around 30W, it is possible to control the propagation of high sound pressure and frequency ultrasonic vibrations in tanks of 3000-5000 liters. <<Specific Example>> As a dynamic change, simultaneously with low-frequency resonance phenomena, the sweep oscillation conditions of the ultrasonic probe at 1-10 MHz enable the generation of 10th, 30th, 100th... harmonics, which can be applied to precision cleaning and nano-level dispersion. The key point is to analyze and evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. Propagation characteristics of ultrasound: 1) Vibration modes 2) Nonlinear phenomena 3) Response characteristics 4) Interactions

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting on "plating treatment" using ultrasound and fine bubbles.

Ultrasonic plating treatment technology using fine bubbles and megahertz ultrasonic waves.

The Ultrasonic System Research Institute has been developing ultrasonic plating treatment technology utilizing fine bubbles and megahertz ultrasound in collaboration with Japan Barrel Industry Co., Ltd. since 2015. Note: As of August 2024, it is continuously evolving based on good results into various application technologies. 1) Cleaning, processing, welding, plating... surface treatment... 2) Chemical reactions, liquid homogenization, stirring... 3) Inspection, evaluation... 4) Optimization control of ultrasound and fine bubbles tailored to specific purposes. Currently, in collaboration with Japan Barrel Industry Co., Ltd., we are developing application technologies utilizing ultrasound and fine bubbles for iron plating treatment (iron powder, amorphous, megahertz ultrasound...). If you are interested, please contact us via email. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • others
  • Other measuring instruments
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Surface residual stress relaxation and uniformization technology for ultrasonic transducers.

A technology for alleviating and equalizing the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system.

The Ultrasonic System Research Institute has published a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to relax the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system. This technology for relaxing surface residual stress enables the improvement of fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to achieve effective ultrasonic irradiation conditions through the setting, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology will be offered as a consulting service. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic properties, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • others
  • Other measuring instruments
  • Special Construction Method

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting services based on the classification technology of ultrasonic propagation phenomena.

Ultrasonic control technology based on the classification of nonlinear phenomena in which ultrasonic vibrations propagate.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibration propagation by analyzing measurement data of ultrasonic propagation states using bispectral analysis. The method developed in this instance estimates the linear and nonlinear resonance effects based on the dynamic characteristics (changes in nonlinear phenomena) of the main frequencies (power spectrum) related to the ultrasonic propagation state. From previous data analysis, we have been able to classify effective utilization methods into the following four types: 1: Linear type 2: Nonlinear type 3: Mixed type 4: Variable type There are numerous successful cases of device development and control settings based on each of the above types. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: The following tools will be used for analysis. Note: "R" is a free statistical processing language and environment.

  • Other Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic technology for liquid homogenization and flowability improvement.

- Technology for controlling nonlinear ultrasonic phenomena, enabling nano-level stirring, emulsification, dispersion, and grinding techniques.

Ultrasonic Treatment 1: "Nanopowdering" Ultrasonic Treatment 2: "Liquid Homogenization and Flowability Improvement" The Ultrasonic System Research Institute has developed a "technology for liquid homogenization and flowability improvement using ultrasonic control of nonlinear phenomena (acoustic flow)." This technology utilizes (evaluates) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic tanks, and other items through surface inspection to control ultrasonic (cavitation and acoustic flow). Furthermore, it achieves effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic properties of specific target objects, by controlling the ultrasonic oscillation in accordance with the interactions between glass containers, ultrasonic waves, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nanoscale. It has been applied and developed from the example of dispersing metal powders to nanosize.

  • pump
  • Water supply facilities
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic cleaning machine utilizing acoustic flow control with fine bubbles.

A technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls ultrasonic acoustic flow.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing fine bubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: An ultrasonic transducer subjected to surface modification treatment using ultrasonic waves and fine bubbles. 2: An ultrasonic dedicated tank subjected to surface modification treatment using ultrasonic waves and fine bubbles. 3: A degassing and fine bubble (microbubble) generation liquid circulation system. 4: An optimization control system for ultrasonic waves and liquid circulation controlled by a control device. 5: An acoustic pressure management system using an ultrasonic tester. Note: The tank, transducer, and tools can be adjusted for acoustic characteristics through aging treatment. *Features This is an effective cleaning device using a dedicated ultrasonic tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank become insufficient. (The standard tank is modified for surface treatment using ultrasonic waves and fine bubbles.) Ultrasonic waves (cavitation and acoustic flow) are controlled according to the target and purpose of cleaning, stirring, and surface modification.

  • pump
  • Water Treatment
  • Drainage and ventilation equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Dynamic Control System of Ultrasonics

Optimization technology based on measurement and analysis of ultrasonic propagation of the target.

<Dynamic Control System for Ultrasound> The propagation state of ultrasound is captured as a system, and analysis and control are performed. Many purposes for utilizing ultrasound involve predicting or controlling the nonlinear phenomena of ultrasound propagating through target objects or liquids. However, in many implementations, numerous issues have been pointed out due to the differences between the theory of cavitation and actual results. In response to such cases: 1) To eliminate obstacles, for ultrasound that changes over time, statistical data processing of sound pressure data is conducted, known as <Measurement and Analysis Technology for Ultrasound Propagation State>. 2) Based on the results of data analysis related to the target, the acoustic characteristics of the target are confirmed through <Technology for Detecting Acoustic Characteristics Related to Surface Elastic Waves of Target Objects and Acoustic Flow of Target Liquids>. 3) By confirming the characteristics, progress is made towards achieving dynamic control of ultrasound through <Technology for Controlling Nonlinear Phenomena with Sweep Oscillation Control for Multiple Ultrasounds>. Through these methods, the utilization state of ultrasound has been improved for efficient use, and there are numerous examples of original ultrasound control systems that achieve the intended use of ultrasound.

  • Analysis and prediction system
  • pump
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

Dynamic control technology of ultrasound through sweeping oscillation of multiple ultrasonic probes.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation through the measurement and analysis of ultrasonic propagation states. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology dynamically controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) related to the propagation state of the ultrasound, based on the dynamic characteristics (changes in nonlinear phenomena). From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1. Two types of sweep oscillation control (linear type) 2. Three types of sweep oscillation control (nonlinear type) 3. Four types of sweep oscillation control (mixed type) 4. Dynamic control (variable type) based on the combinations above. Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1. Linear variable control type 2. Nonlinear variable control type 3. Mixed variable control type (dynamic variable type)

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation (sweep oscillation, pulse oscillation) system

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear vibration phenomena of surface acoustic waves using ultrasonic oscillation control technology. By confirming the basic acoustic characteristics of ultrasonic waves (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, fixtures, objects, etc.), we realize ultrasonic propagation states tailored to specific applications through oscillation control. By setting the oscillation conditions for sweep oscillation and pulse oscillation using two or more types of nonlinear resonant ultrasonic oscillation control probes, we dynamically control high sound pressure level resonance phenomena and the generation of harmonics (nonlinear phenomena of the 10th order and above), achieving high-frequency propagation states of over 100 MHz. Note: Precision cleaning examples Sweep oscillation: 70 kHz to 15 MHz, 15 W Pulse oscillation: 13 MHz, 8 W This technology is an efficient method for utilizing low-power ultrasonic oscillation.

  • Scientific Calculation and Simulation Software
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Machining technology utilizing megahertz ultrasonic vibrations.

Machining technology using ultrasonic systems (sound pressure measurement analysis, oscillation control).

The Ultrasonic System Research Institute has developed "ultrasonic oscillation control (processing) technology" that utilizes the acoustic characteristics (vibration response characteristics and nonlinear phenomena) of objects (tools, target items, etc.) through a sound pressure measurement analysis device (ultrasonic tester) and a megahertz ultrasonic oscillation control probe. With this developed technology, it has become possible to control nonlinear vibration phenomena in target objects through "ultrasonic oscillation and output control," achieving dynamic control of ultrasonic waves (changes in bispectrum). The original ultrasonic oscillation control probe allows for the utilization and control of nonlinear effects of ultrasonic vibrations. This is an effective ultrasonic utilization (control) technology tailored to applications such as processing, cleaning, surface modification, and promoting chemical reactions. There are interactions with the acoustic characteristics of cutting tools (drills, reamers, cutters, knives, etc.) and the size and material of cutting oils, jigs, and target objects, making the analysis (self-correlation, impulse response, contribution rate, bispectrum) complex. However, various optimizations based on the analysis results of sound pressure measurement data become possible.

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development technology for ultrasonic propagation control systems for various solvents.

Development of an ultrasonic probe utilizing the acoustic properties of Teflon rods (with iron cores).

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control system for various solvents (such as hydrofluoric acid and hydrochloric acid) using Teflon (PTFE). By confirming the basic acoustic properties (response characteristics, propagation characteristics) of Teflon rods (with iron cores), it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). Specifically, using two types of ultrasonic oscillation control probes, we set oscillation conditions based on measurements and analyses of the intended purpose and interactions, combining sweep oscillation and pulse oscillation. In particular, to control low-frequency resonance phenomena, we utilize high-frequency nonlinear phenomena. Therefore, sound pressure measurements require a measurement range of over 100 MHz. The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Fluctuation characteristics - Effects due to interactions

  • pump
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasonic oscillation (sweep oscillation, pulse oscillation) system

Technology for optimizing the resonance and nonlinear phenomena of ultrasonic vibrations through megahertz oscillation control of an original ultrasonic oscillation control probe.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear vibration phenomena of surface acoustic waves through ultrasonic oscillation control techniques. By confirming the basic acoustic characteristics of ultrasonic waves (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, fixtures, objects, etc.), we realize ultrasonic propagation states tailored to specific applications through oscillation control. Using two or more types of nonlinear resonant ultrasonic oscillation control probes, we dynamically control high-frequency propagation states above 900 MHz through the setting of oscillation conditions for sweep oscillation and pulse oscillation (note), resulting in high sound pressure level resonance phenomena and the generation of harmonics (nonlinear phenomena of 10th order and above). Note: Precision cleaning examples Sweep oscillation: 700 kHz – 20 MHz, 15 W Pulse oscillation: 13 MHz, 8 W Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" statistical processing language autcor: autocorrelation analysis function bispec: bispectrum analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic propagation control technology at frequencies above 900 MHz due to oscillation below 20 MHz.

Technology for controlling megahertz sweep oscillation using a technique for adjusting the piezoelectric elements of original ultrasonic probes.

Development of technology to enable ultrasonic propagation states above 900 MHz (sweep oscillation control technology using original ultrasonic probes) The Ultrasonic System Research Institute has developed: - Measurement technology for ultrasonic propagation states (original product: ultrasonic tester) - Analysis technology for ultrasonic propagation states (nonlinear analysis system for time-series data) - Optimization technology for ultrasonic propagation states (optimization processing of low-frequency vibrations and ultrasound) - Manufacturing technology and oscillation control technology for megahertz ultrasonic oscillation probes - Surface modification treatment technology using fine bubbles and ultrasound ... By applying the above technologies, we have developed a nonlinear oscillation control technology for ultrasound that enables the utilization of ultrasonic propagation states above 900 MHz. Note: Original nonlinear resonance phenomenon The generation of harmonics caused by original oscillation control has resulted in ultrasonic vibrations (resonance phenomena of harmonics above the 10th order) achieved through resonance phenomena that produce high amplitudes. For those interested in more details, please contact the Ultrasonic System Research Institute via email. Note: The propagation states above 900 MHz will be analyzed using sound pressure data.

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation control technology (consulting support)

Ultrasonic oscillation control technology for controlling nonlinear vibration phenomena

This is a control technology based on measurement, analysis, and evaluation techniques of ultrasonic propagation states, featuring an original nonlinear resonance phenomenon (Note 1). It represents a new application technology for precision cleaning, processing, stirring, inspection, and surface treatment. Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics through original oscillation control, which achieves high amplitude ultrasonic vibrations through resonance phenomena. To efficiently utilize the acoustic properties (surface elastic waves) of various materials, the relaxation treatment of residual stress distribution on surfaces can be easily realized. From an engineering (experimental and technical) perspective on elastic waves and the ultrasonic model of abstract algebra, the original oscillation control method (Note 2) has been developed as an application method for nonlinear phenomena. Note 2: Original Oscillation Control Method Two types of ultrasonic oscillation are performed: one is sweep oscillation control, and the other is pulse oscillation control. Detailed settings are based on the purpose, target object, and tooling, and are configured according to a logical model from the vibration system as a whole.

  • others
  • Other analytical equipment
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for using ultrasonic cleaners through sweep oscillation.

- Technology combining sweep oscillation with ultrasonic probes and ultrasonic cleaners -

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probe to ultrasonic cleaners. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, aimed at precision cleaning, processing, and stirring. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic model of ultrasound. The key point is to confirm the ultrasonic propagation characteristics of the target object, which is important for setting the oscillation conditions of the ultrasonic oscillation control probe as an optimization of the system's vibration modes related to sweep oscillation and pulse oscillation, serving as a control method for the original nonlinear resonance phenomenon.

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.

Application technology for ultrasonic sound pressure measurement, analysis, control, and evaluation systems.

The Ultrasonic System Research Institute has developed technology to control resonance and nonlinear phenomena in the propagation state of surface acoustic waves through the control of ultrasonic oscillation, using a combination of low and high frequencies. By utilizing new ultrasonic propagation materials (such as stainless steel wire and titanium straws), efficient ultrasonic applications tailored to specific purposes become possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology controls the complex changes in surface acoustic waves according to the intended use. Practically, by using multiple (two types of) ultrasonic probes to generate multiple (two types of) oscillations (sweep oscillation and pulse oscillation), complex vibration phenomena (original nonlinear resonance phenomena) are created, achieving high-frequency propagation states at high sound pressure or low-frequency propagation states tailored to the desired natural frequency. In particular, by optimizing the vibration characteristics of tanks and pumps with megahertz ultrasound, efficient ultrasonic control is realized (propagating through 3000 liters of cleaning solution at a 30W output).

  • pump
  • Septic tank equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Original ultrasonic probe for a megahertz ultrasonic system.

Application of megahertz ultrasonic oscillation control technology

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states from 1 to 100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation of several tons of objects can be controlled with an ultrasonic output of less than 20W, even in a 1000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to the resonance phenomenon of ultrasonic vibrations.

  • Scientific Calculation and Simulation Software
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Dynamic liquid circulation system for ultrasonic cleaning machines (consulting available)

Optimization technology for ultrasonic cleaning machines

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines, which propagate through the liquid, to set and control the state of ultrasonic cleaning machines according to specific purposes, taking into account the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific objectives through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology that considers "timbre." Note 2: The know-how involves settings related to the relationships between the cleaning machine, cleaning solution, and air at their respective boundaries. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has been made possible through degassing, aeration, ultrasound, and elastic wave dynamics on the tank surface.

  • others
  • Other analytical equipment
  • pump

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting services for the manufacturing and evaluation technology of ultrasonic probes.

Technology for evaluating the dynamic characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed manufacturing and evaluation technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 900 MHz, based on the classification of ultrasonic propagation characteristics (acoustic characteristics). We can manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. This technology is available for consulting. If you are interested, please contact us via email. Propagation characteristics of ultrasonic probes: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (interaction between oscillation voltage and received voltage: analysis of power contribution rate) Note: "R" is a free statistical processing language and environment. - autocor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

System technology of ultrasound (consulting) through sound pressure data analysis.

It is a technology that enables ultrasonic control tailored to specific purposes.

Ultrasonic System Technology 1: Development technology for dedicated water tanks 2: Improvement technology for ultrasonic transducers 3: Measurement technology for ultrasonic propagation conditions 4: Control technology for ultrasonic (acoustic flow) We provide system technology related to the above. This technology enables ultrasonic control tailored to specific purposes. * Know-how for improving ultrasonic transducers... * * Know-how for designing ultrasonic water tanks... * * Know-how for measuring ultrasonic propagation conditions... * * Know-how for controlling ultrasonic (acoustic flow)... * We offer the above. For more details, please contact the Ultrasonic System Research Institute via email.

  • others
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting for Ultrasonic System Development Based on Sound Pressure Measurement Analysis 2

A technology has been developed to control the nonlinear phenomena of ultrasonic vibrations propagating to the target object based on classification techniques of ultrasonic waves and oscillation control.

We provide consulting services for the development of ultrasonic systems utilizing the following device. <<Deaeration Fine Bubble (Microbubble) Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble (microbubble) generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles (microbubbles), and when measuring the fine bubbles (microbubbles), the distribution of ultra-fine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled.

  • others
  • Other analytical equipment
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Improvement technology for ultrasonic cleaning machines (consulting support)

Optimization of Ultrasonic Propagation State Based on Acoustic Pressure Measurement Analysis - Optimal Control of Resonance Phenomena and Nonlinear Phenomena -

Methods to Improve the Current Ultrasonic Cleaning Machine (Development of Optimization Technology for Ultrasonic Tanks and Liquid Circulation) The Ultrasonic System Research Institute has developed technology to control the propagation state of ultrasonic waves by analyzing the effects of the structure, strength, and manufacturing conditions of the ultrasonic tank, as well as by setting the method of liquid circulation within the tank. This technology allows for the analysis and evaluation of the dynamic characteristics of complex ultrasonic vibrations in relation to various factors, enabling the setting of the circulation pump method to adjust the effects of cavitation and acceleration according to specific objectives. Note: The settings regarding the relationship between the tank, circulating liquid, and air are proprietary knowledge. This technology can also be applied to tanks that do not have an overflow structure. As a specific response, we can address the issues of ultrasonic attenuation caused by the current tank by adjusting the settings of the liquid circulation pump. In particular, for precise cleaning at the nano level, we propose additional measures for oscillation control using megahertz ultrasonic oscillation probes.

  • pump
  • Turbid water and muddy water treatment machines
  • Water treatment technology and systems

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development technology for ultrasonic systems (consulting support)

Development of an original ultrasonic system utilizing surface elastic wave control technology based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed applied technologies that utilize surface acoustic waves through ultrasonic control. By combining ultrasound and surface acoustic waves, we achieve dynamic control of ultrasonic propagation. The key point is the ability to efficiently control nonlinear phenomena caused by surface acoustic waves. As specific technologies, we have developed system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks and tools, tailored to specific purposes (cleaning, stirring, stress relief, inspection, etc.). As a result of utilizing measurement and analysis techniques for ultrasonic propagation states, we have confirmed the realization of harmonic control and the ability to adjust nonlinear phenomena. Our know-how lies in confirming and responding to the acoustic characteristics of the system (measurement, analysis, evaluation).

  • others
  • Other analytical equipment
  • Secondary steel products

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Custom-made ultrasonic oscillation measurement and analysis system

A system suitable for management and examination related to ultrasound, including oscillation, measurement, and analysis.

The Ultrasonic System Research Institute (Location: Hachioji City, Tokyo) manufactures and sells custom-made ultrasonic oscillation, measurement, and analysis systems suitable for the management and examination of ultrasonic propagation conditions. << Ultrasonic Oscillation Measurement and Analysis System >> A set that enables optimal ultrasonic cleaning "management" and "examination" by confirming the acoustic characteristics of parts from sound pressure management of ultrasonic cleaners. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic cleaning machine acoustic flow control system (consulting support)

Dynamic Liquid Circulation System of Ultrasonic Cleaners - Acoustic Flow Control

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines propagating in liquid, to set and control the state of ultrasonic cleaning machines according to the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific purposes through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology considering "timbre." Note 2: The know-how involves settings related to the relationships at the boundaries of the cleaning machine, cleaning liquid, and air. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has become possible through degassing, aeration, ultrasound, and elastic waves on the tank surface.

  • pump
  • others
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

(Customizable) Megahertz ultrasonic oscillation control probe

A megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation conditions from 1 to 900 MHz.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation states from 1 to 900 MHz by combining it with a function generator for controlling ultrasonic propagation states. This is a new application technology based on measurement, analysis, and evaluation techniques of ultrasonic propagation states for precision cleaning, processing, stirring, and inspection. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the technology for utilizing surface elastic waves on the surface of ultrasonic elements. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. Note 1: Propagation characteristics of ultrasonic waves include nonlinear characteristics, response characteristics, fluctuation characteristics, and effects due to interactions.

  • pump
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Prev 1234 Next
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Contact this company

      Contact Us Online
    • Before making an inquiry

      Download PDF

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.