iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35536items
    • Facilities
      Facilities
      56658items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37010items
    • Civil Engineering Materials
      Civil Engineering Materials
      9535items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31890items
    • others
      others
      84581items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6981
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. ProductSearch
  3. Facilities
  4. Water Supply and Drainage Equipment
  5. pump
  6. Ultrasonic cleaning machine acoustic flow control system (consulting support)

Ultrasonic cleaning machine acoustic flow control system (consulting support)

  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration

USSI

last updated:Nov 24, 2024

超音波システム研究所
超音波システム研究所
  • Official site

Dynamic Liquid Circulation System of Ultrasonic Cleaners - Acoustic Flow Control

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines propagating in liquid, to set and control the state of ultrasonic cleaning machines according to the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific purposes through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology considering "timbre." Note 2: The know-how involves settings related to the relationships at the boundaries of the cleaning machine, cleaning liquid, and air. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has become possible through degassing, aeration, ultrasound, and elastic waves on the tank surface.

    pumpOther analytical equipmentothers
IMG_9355.jpg

Ultrasonic cleaning machine acoustic flow control system (consulting support)

IMG_9355.jpg
IMG_9355.jpg
  • Related Link - http://ultrasonic-labo.com/?p=19322

Inquire About This Product

  • Contact Us Online
  • Download catalog

basic information

As a specific response, we can set and control the current state of ultrasonic propagation in the water tank to optimally achieve the effects of cavitation and acceleration as a power spectrum. Through measurement and analysis using an ultrasonic tester, we have realized the detection of various interactions of ultrasound by examining various relationships and response characteristics (Note 3). Note 3: Power contribution rate, impulse response... Regarding the measurement and analysis of ultrasonic cleaning machines, the setting of sampling time... utilizes original simulation technology. Furthermore, this technology is being proposed and implemented as a consulting improvement technique for the liquid circulation method of ultrasonic systems. We will propose, improve, and report on the optimal output state of ultrasound based on the balance of <ultrasound>, <water tank>, and <liquid circulation>, along with measurement and analysis data, tailored to the structure and size of the ultrasonic water tank and the ultrasonic parameters (frequency, output, number of units, etc.).

Price information

Please feel free to contact us.

Delivery Time

P4

※Feel free to contact us.

Applications/Examples of results

2008. 8 Establishment of the Ultrasonic System Research Institute ... 2012. 1 Start of manufacturing and sales of ultrasonic measurement and analysis system (Ultrasonic Tester NA) ... 2020. 3 Patent application for ultrasonic welding 2020. 4 Patent application for ultrasonic plating and ultrasonic processing 2020. 5 Patent application for flow-type ultrasonic cleaning machine 2020. 11 Start of consulting services for surface treatment using ultrasonic and fine bubbles 2021. 3 Start of manufacturing and sales of 20 MHz ultrasonic oscillation system 2021. 5 Development of new ultrasonic propagation tools 2021. 6 Start of manufacturing and sales of ultrasonic systems (sound pressure measurement analysis and oscillation control) 2021. 7 Start of acoustic property testing using ultrasonic (confirmation of suitability for ultrasonic cleaning) ... 2024. 5 Development of optimization technology related to the combination of sound and ultrasound 2024. 6 Development of optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation 2024. 7 Development of ultrasonic probes using components with iron plating on polyimide film 2024. 8 Development of "megahertz ultrasonic control" method applying Shannon's juggling theorem

Detailed information

  • datass7.jpg

    "Ultrasonic Sound Pressure Measurement and Analysis" 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasonic waves) through feedback analysis using a multivariate autoregressive model...

  • IMG_1648.jpg

    System Overview - Dedicated probe for sound pressure measurement of ultrasonic cleaners: 1 unit - General-purpose ultrasonic measurement probe: 1 unit - Oscilloscope set: 1 set - Analysis software, manual, and various installation sets: 1 set (USB memory)

  • IMG_3551.jpg

    The Ultrasonic System Research Institute has developed a technology for controlling the oscillation of multiple ultrasonic waves using the nonlinear vibration phenomena of surface acoustic waves.

  • IMG_1429.jpg

    The Ultrasonic System Research Institute has developed a new acoustic flow control technology that utilizes flows containing fine bubbles (microbubbles).

  • 005.jpg

    Improvement of fluidity by ultrasound

  • 007.jpg

    Ultrasonic stirring system

  • 008.jpg

    Improvement of the cleaning solution

  • 006.jpg

    Ultrasonic Emulsification System

  • 101.jpg

    Ultrasound system

catalog(34)

Download All Catalogs
Nanolevel stirring technology using megahertz ultrasound.

Nanolevel stirring technology using megahertz ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology of ultrasonic propagation control systems based on sound pressure measurement analysis - technology to control nonlinear phenomena of ultrasound.

Development technology of ultrasonic propagation control systems based on sound pressure measurement analysis - technology to control nonlinear phenomena of ultrasound.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble generation liquid circulation device - a system for uniformizing the dissolved oxygen concentration in ultrasonic cleaning machines.

Deaeration fine bubble generation liquid circulation device - a system for uniformizing the dissolved oxygen concentration in ultrasonic cleaning machines.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Cleaning technology using ultrasound and fine bubbles (microbubbles) - Oscillation control technology based on the classification of cavitation and acoustic flow.

Cleaning technology using ultrasound and fine bubbles (microbubbles) - Oscillation control technology based on the classification of cavitation and acoustic flow.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface treatment technology using fine bubbles and ultrasound - relaxation treatment of surface residual stress through optimization technology of acoustic flow.

Surface treatment technology using fine bubbles and ultrasound - relaxation treatment of surface residual stress through optimization technology of acoustic flow.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Basic knowledge and generation mechanisms of ultrasound and fine bubbles (microbubbles)

Basic knowledge and generation mechanisms of ultrasound and fine bubbles (microbubbles)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaner (Deaeration fine bubble generation liquid circulation system) Ver2

Ultrasonic cleaner (Deaeration fine bubble generation liquid circulation system) Ver2

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Precision cleaning technology using ultrasound—Optimization of cavitation and acoustic flow.

Precision cleaning technology using ultrasound—Optimization of cavitation and acoustic flow.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Flow and Shape of Acoustic Flow (Nonlinear Phenomenon) by Ultrasound: Constructal Law

Flow and Shape of Acoustic Flow (Nonlinear Phenomenon) by Ultrasound: Constructal Law

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Know-how <Installation of ultrasonic transducers, degassing, microbubble generation liquid circulation> - Ver2

Know-how <Installation of ultrasonic transducers, degassing, microbubble generation liquid circulation> - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Plating method using ultrasound and fine bubbles

Plating method using ultrasound and fine bubbles

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology for a dynamic control system of ultrasound based on a logical model.

Development technology for a dynamic control system of ultrasound based on a logical model.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface treatment technology using ultrasound, microbubbles, and surface elastic waves.

Surface treatment technology using ultrasound, microbubbles, and surface elastic waves.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Main factors of ultrasound utilization (interactions) ver2

Main factors of ultrasound utilization (interactions) ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Acoustic Flow (Nonlinear Phenomena of Ultrasound) Control Technology - Ver4

Acoustic Flow (Nonlinear Phenomena of Ultrasound) Control Technology - Ver4

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

An experimental study on ultrasonic control using acoustic flow control with a small pump in a flowing water system.

An experimental study on ultrasonic control using acoustic flow control with a small pump in a flowing water system.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation technology for ultrasonic transducers

Surface residual stress relaxation technology for ultrasonic transducers

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble generation liquid circulation device - Technology for uniformity of cleaning solution and acoustic flow control -

Deaeration fine bubble generation liquid circulation device - Technology for uniformity of cleaning solution and acoustic flow control -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Experience Regarding Shannon's First Theorem - Original Technology Development -

Experience Regarding Shannon's First Theorem - Original Technology Development -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation (Sweep Oscillation, Pulse Oscillation) System - Know-How 1 -

Ultrasonic Oscillation (Sweep Oscillation, Pulse Oscillation) System - Know-How 1 -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology of ultrasonic systems based on sound pressure measurement analysis.

Development technology of ultrasonic systems based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound, cleaning, stirring, modification, chemical reaction, system

Ultrasound, cleaning, stirring, modification, chemical reaction, system

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaner's <sound pressure measurement, experimentation, analysis, evaluation> (onsite service available)

Ultrasonic cleaner's <sound pressure measurement, experimentation, analysis, evaluation> (onsite service available)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Measurement technology for various vibrations using ultrasound.

Measurement technology for various vibrations using ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface modification technology (stress relaxation) for ultrasonic beauty devices Ver2

Surface modification technology (stress relaxation) for ultrasonic beauty devices Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Cleaning System (28kHz, 72kHz) Specification Document - Technology for Optimizing the Interaction of Different Ultrasonic Transducers.

Ultrasonic Cleaning System (28kHz, 72kHz) Specification Document - Technology for Optimizing the Interaction of Different Ultrasonic Transducers.

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

News about this product(31)

Flow and form

Ultrasonic cleaning machine liquid circulation technology - Utilizing flow and shape; Constructal law.

  • Company news

The Ultrasonic System Research Institute has developed a liquid circulation technology for ultrasonic cleaners that utilizes the "Constructal Law" related to flow and shape (control of nonlinear phenomena). This was developed with inspiration from observations of river flows, as shown in the attached photo. Regarding the use of ultrasound, we believe that through our experience in observing flow, we can intuitively grasp acoustic flow (a nonlinear phenomenon of ultrasound). Acoustic flow <General Concept> When finite amplitude waves propagate through a gas or liquid, acoustic flow occurs. Acoustic flow is a unidirectional steady flow of matter that arises either as a result of viscous losses from wave pulses in a free inhomogeneous field, or in the vicinity of obstacles (cleaning objects, fixtures, liquid circulation) within an acoustic field, or near vibrating bodies due to inertial losses. Using the above as a reference and hint, we organize the technology for measuring, analyzing, evaluating, and utilizing (controlling) "nonlinear phenomena" in ultrasonic propagation phenomena through the "Constructal Law," which improves flow, thereby consolidating it into ultrasonic technology.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Ultrasonic control technology

Ultrasonic control technology through the installation method of ultrasonic transducers — technology for fixing vibrating objects.

  • Product news

The Ultrasonic System Research Institute has developed a new technology for controlling standing waves through the installation method of ultrasonic transducers, enabling the control of cavitation and acceleration (acoustic flow) effects. With this technology, it is possible to stir, atomize, clean, and modify liquids ranging from 300 to 6000 liters, which require a large amount of energy. - Application examples of the developed technology - Stirring and dispersing nano-level catalysts in solvents (stirring and dispersing carbon nanotubes in plating solutions and paints). Achieving appropriate ultrasonic irradiation for cleaning targets with varying adhesion strengths due to multiple contaminants, or for surface modification of complex-shaped parts. The most effective examples include surface modification of metal and resin parts and materials (relaxation of residual stress). Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Self-correlation and bispectrum

Analysis and evaluation of ultrasonic sound pressure data

  • Product news

The Ultrasonic System Research Institute conducts consulting related to the use of ultrasound by applying feedback analysis technology based on multivariate autoregressive models, utilizing a technique for measuring, analyzing, and evaluating the propagation state of ultrasound. By organizing the measurements, analyses, and results obtained using ultrasonic testers in chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for specific purposes. Note: Nonlinear characteristics (dynamic characteristics of acoustic flow), response characteristics, fluctuation characteristics, effects due to interactions, etc. By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various detailed effects related to vibrational phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating the effectiveness of new nonlinear parameters related to the propagation state of ultrasound and the surface of the target object, such as changes in bispectrum and changes in autocorrelation. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on good confirmations.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Classification of Ultrasonics (Effect of Degassing Fine Bubble Generation Liquid Circulation System)

Deaeration fine bubble/microbubble generation liquid circulation device

  • Company news

The Ultrasonic System Research Institute provides consulting services for the manufacturing and development methods of the "Deaeration Fine Bubble Generation Liquid Circulation Device," which can efficiently control ultrasonic waves. "Deaeration Fine Bubble Generation Liquid Circulation Device" 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the deaeration liquid circulation device. 3) As the concentration of dissolved gases decreases, the size of the bubbles generated by cavitation becomes smaller. 4) Through appropriate liquid circulation, microbubbles smaller than 20μ are generated. The above describes the state of the deaeration fine bubble and microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the aforementioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles and microbubbles. When measuring the fine bubbles and microbubbles, the distribution of ultra-fine bubbles and nanobubbles becomes greater than that of fine bubbles and microbubbles. The above state indicates that ultrasonic waves can be stably controlled.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Companynews list (582)

Company information

超音波システム研究所

超音波システム研究所

Service Industry

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
  • Official site
Phone number/address

The Ultrasonic System Research Institute conducts the following activities with its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control): 1) Manufacturing and sales of ultrasonic systems (sound pressure measurement analysis, oscillation control) 2) Consulting services for various equipment (Note): cleaning machines, stirring devices, processing equipment, machine tools, plating devices, welding devices, etc. Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) We manufacture and sell a system that combines the "Ultrasonic Tester NA (recommended type)" for easy measurement and analysis of ultrasonic waves and the "Ultrasonic Oscillation System (1 MHz, 20 MHz)" for easy oscillation control. <Patent Applications Filed> Patent Application No. 2021-125866: Ultrasonic Control (Ultrasonic Oscillation Control Probe) Patent Application No. 2021-159990: Ultrasonic Welding Patent Application No. 2021-161532: Ultrasonic Plating Patent Application No. 2021-171909: Ultrasonic Processing Patent Application No. 2021-175568: Flow-type Ultrasonic Cleaning Some of the manufacturing technology for the ultrasonic oscillation control probe is described in Patent Application No. 2021-125866. Patent Application No. 2023-195514: Ultrasonic Plating Using Megahertz Ultrasonic Waves and Fine Bubbles.

Product/Service List (153)

The related categories of pump

  • Facilities
  • Water Supply and Drainage Equipment
  • pump
  • others
  • Surveys, Measurements, and Services
  • Surveying, measuring and analysis equipment
  • Other analytical equipment
          

Inquire About This Product

  • Contact Us Online
  • Download catalog

Products

  • Search for Products

Company

  • Search for Companies

Special Features

  • Special Features

Ranking

  • Overall Products Ranking
  • Overall Company Ranking

support

  • site map
IPROS
  • privacy policy Regarding external transmission of information
  • terms of service
  • About Us
  • Careers
  • Advertising
COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
Please note that the English text on this page is automatically translated and may contain inaccuracies.