iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35536items
    • Facilities
      Facilities
      56640items
    • Lighting and Interior
      Lighting and Interior
      17271items
    • Common materials
      Common materials
      37010items
    • Civil Engineering Materials
      Civil Engineering Materials
      9534items
    • Construction, work and methods
      Construction, work and methods
      27652items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30351items
    • IT/Software
      IT/Software
      31926items
    • others
      others
      84595items
    • Store and facility supplies
      Store and facility supplies
      4357items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7379items
    • Energy and Resources
      Energy and Resources
      11607items
  • Search for companies by industry

    • Information and Communications
      7204
    • others
      6984
    • Building materials, supplies and fixtures manufacturers
      6682
    • Service Industry
      4614
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. ProductSearch
  3. others
  4. others
  5. others
  6. Consulting for Ultrasonic System Development Based on Sound Pressure Measurement Analysis 2

Consulting for Ultrasonic System Development Based on Sound Pressure Measurement Analysis 2

  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration

Ultrasound system

last updated:Dec 03, 2024

超音波システム研究所
超音波システム研究所
  • Official site

A technology has been developed to control the nonlinear phenomena of ultrasonic vibrations propagating to the target object based on classification techniques of ultrasonic waves and oscillation control.

We provide consulting services for the development of ultrasonic systems utilizing the following device. <<Deaeration Fine Bubble (Microbubble) Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble (microbubble) generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles (microbubbles), and when measuring the fine bubbles (microbubbles), the distribution of ultra-fine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled.

    Non-destructive testingOther analytical equipmentothers
IMG_9409.jpg

Consulting for Ultrasonic System Development Based on Sound Pressure Measurement Analysis 2

IMG_9409.jpg
IMG_9409.jpg
  • Related Link - http://ultrasonic-labo.com/?p=19322

Inquire About This Product

  • Contact Us Online
  • Download catalog

basic information

The Ultrasonic System Research Institute has developed analysis, design, and manufacturing technologies for ultrasonic <cleaning, stirring, etc.> systems based on measurement, analysis, and evaluation of ultrasonic propagation conditions. We provide the following consulting services: 1. Measurement and analysis of the acoustic characteristics of ultrasonic equipment and target objects (cleaning items, etc.). 2. Design and adjustment of tanks and transducers based on acoustic characteristics (selection of multiple different frequency ultrasonic transducers as needed, or adoption of megahertz ultrasonic oscillation control probes, etc.). 3. Optimization of ultrasonic oscillation control conditions for target objects. 4. Design, manufacturing, and development of liquid circulation systems containing fine bubbles, tailored to ultrasonic control. 5. Design of tanks and jigs based on the above acoustic pressure measurement analysis (optimization of nonlinear phenomena according to purpose). 6. Manufacturing utilizing fine bubbles and ultrasound (aging treatment and surface residual stress relaxation treatment of tanks, transducers, jigs, etc. using fine bubbles and ultrasound). 7. Verification of ultrasonic propagation characteristics of ultrasonic transducers, tanks, and jigs using an ultrasonic tester (acoustic pressure measurement analysis system).

Price information

Please feel free to contact us.

Delivery Time

Please contact us for details

Applications/Examples of results

2008. 8 Established the Ultrasonic System Research Institute ... 2012. 1 Started manufacturing and selling ultrasonic measurement and analysis systems (Ultrasonic Tester NA) ... 2023. 8 Developed ultrasonic control technology utilizing spectral series in abstract mathematics 2023. 8 Developed a combination technology of sweep oscillation and pulse oscillation 2023. 9 Developed ultrasonic propagation control technology over 100 MHz 2023. 10 Applied for a patent for megahertz ultrasonic plating 2023. 11 Developed ultrasonic oscillation control technology to control nonlinear phenomena 2024. 1 Developed technology to measure, analyze, and evaluate the interaction of ultrasonic vibrations 2024. 2 Developed surface treatment technology using megahertz ultrasonic waves 2024. 4 Developed optimization technology for resonance phenomena and nonlinear phenomena 2024. 5 Developed optimization technology related to the combination of sound and ultrasound 2024. 6 Developed optimization and evaluation technology concerning water tanks, ultrasound, and liquid circulation 2024. 7 Developed an ultrasonic probe using components with iron plating on polyimide film 2024. 8 Developed a "megahertz ultrasonic control" method applying Shannon's juggling theorem

Detailed information

  • 20220412-0004_09011.png

    Ultrasonic system based on sound pressure measurement analysis.

  • IMG_351600.jpg

    Deaeration fine bubble generation liquid circulation device

  • IMG_2593.jpg

    Developed ultrasonic control technology using new ultrasonic propagation tools.

  • IMG_4917.jpg

    << Ultrasonic Sound Pressure Measurement and Analysis >> Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasonic sound) through feedback analysis using a multivariate autoregressive model.

  • IMG_4220.jpg

    Ultrasound experiment

  • IMG_8566.jpg

    Ultrasonic cleaner

  • 20220424c.jpg

    Ultrasound system based on sound pressure measurement analysis.

  • 104.jpg

    Ultrasonic system based on sound pressure measurement analysis.

  • IMG_6756.jpg

    Ultrasonic model based on sound pressure measurement analysis.

catalog(19)

Download All Catalogs
Development technology of ultrasonic systems based on sound pressure measurement analysis.

Development technology of ultrasonic systems based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic stirring (nano-level emulsification, dispersion, and grinding) technology - Nonlinear control of ultrasound -

Ultrasonic stirring (nano-level emulsification, dispersion, and grinding) technology - Nonlinear control of ultrasound -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic control technology applied with the mathematical theory of communication.

Ultrasonic control technology applied with the mathematical theory of communication.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Technology Utilizing Statistical Thinking - Ver2

Ultrasonic Technology Utilizing Statistical Thinking - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation system.

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation system.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena Ver2

Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound, cleaning, stirring, modification, chemical reaction, system

Ultrasound, cleaning, stirring, modification, chemical reaction, system

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaner's <sound pressure measurement, experimentation, analysis, evaluation> (onsite service available)

Ultrasonic cleaner's <sound pressure measurement, experimentation, analysis, evaluation> (onsite service available)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Measurement technology for various vibrations using ultrasound.

Measurement technology for various vibrations using ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear control technology of ultrasound using two function generators.

Nonlinear control technology of ultrasound using two function generators.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

New Ultrasonic Control Technology - Measurement, Analysis, and Evaluation Technology of Ultrasonic Sound Pressure -

New Ultrasonic Control Technology - Measurement, Analysis, and Evaluation Technology of Ultrasonic Sound Pressure -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Control Method Applying Shannon's Juggling Theorem - Optimization of Cavitation and Acoustic Flow -

Ultrasonic Control Method Applying Shannon's Juggling Theorem - Optimization of Cavitation and Acoustic Flow -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

News about this product(17)

The process of cavitation and acoustic flow.

Optimization Process of Cavitation and Acoustic Flow - Control Technology of Original Ultrasonic System -

  • Company news

--Abstract Algebra Model and Ultrasonic Experimentation and Examination Cycle-- (Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena) The Ultrasonic System Research Institute has developed ultrasonic <dynamic control> technology that optimizes the interaction of ultrasonic vibrations based on various analytical results of ultrasonic propagation states obtained through an original ultrasonic system (sound pressure measurement analysis and oscillation control) using an abstract algebra model. Note: Control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. Compared to previous control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we are proposing and responding to it as a consulting service (there is an increasing track record in precision cleaning, stirring, and processing at the nano level). Note: Parameters: Power spectrum, autocorrelation, bispectrum, power contribution ratio, impulse response characteristics, and others.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Ultrasonic chemical reaction control technology

An experimental system for controlling chemical reactions through the oscillation control of megahertz ultrasound.

  • Product news

--- Control of Chemical Reactions through Nonlinear Ultrasonic Phenomena --- The Ultrasonic System Research Institute has developed an experimental device for controlling chemical reactions using ultrasonic waves by utilizing the technology to control nonlinear ultrasonic phenomena (acoustic flow). This technology controls ultrasonic waves (cavitation and acoustic flow) tailored to specific purposes by measuring and confirming the interactions within the container and through ultrasonic control using a megahertz ultrasonic oscillation probe. Note: Ultrasonic Control By setting the oscillation conditions for sweep oscillation and pulse oscillation using two types of nonlinear resonant ultrasonic oscillation probes, it dynamically controls high-frequency propagation states above 30 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). Note: Ultrasonic Control "Precision Cleaning Example" Sweep Oscillation: 70 kHz - 15 MHz, 15 W Pulse Oscillation: 13 MHz, 8 W In particular, the dynamic characteristics of harmonics through acoustic flow control enable reactions and responses at the nano level. This has been applied and developed from the example of dispersing metal powder to nanosize.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
A megahertz ultrasonic system using a resin container.

A control system for the oscillation of megahertz ultrasound utilizing the ultrasonic propagation characteristics of resin containers.

  • Product news

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables the control of ultrasonic propagation states above 1-900 MHz by installing a megahertz ultrasonic oscillation control probe in resin containers. By measuring, analyzing, evaluating, and technically assessing the ultrasonic propagation characteristics of containers and mounting components, effective ultrasonic irradiation for precision cleaning, processing, stirring, welding, and plating can be achieved. This represents a new application technology for ultrasound. Utilizing various acoustic properties (surface elastic waves) based on the structure, shape, and manufacturing methods of various materials, ultrasonic stimulation can be controlled for objects weighing several tons even in a 1000-liter water tank with an ultrasonic output of less than 20W. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic model of ultrasound. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Dynamic Control Model of Ultrasonic Waves

Dynamic control technology of ultrasound applied using Shannon's juggling theorem.

  • Company news

The Ultrasonic System Research Institute has developed a "Dynamic Control Method for Megahertz Ultrasound" by applying Shannon's Juggling Theorem. << Application of Shannon's Juggling Theorem >> (F + F2 + ...) * H = (V + V2 + ...) * N F: The oscillation ratio of the base ultrasonic 1 F2: The oscillation ratio of the base ultrasonic 2 F3: The oscillation ratio of the base ultrasonic 3 H: Basic time (maximum control cycle time) (H = MAX(oscillation cycle of ultrasonic 1, oscillation cycle of ultrasonic 2, ...)) V: Megahertz oscillation cycle time by ultrasonic probe 1 V2: Megahertz oscillation cycle time by ultrasonic probe 2 V3: Megahertz oscillation cycle time by ultrasonic probe 3 V4: Megahertz oscillation cycle time by ultrasonic probe 4 (In the case of pulse oscillation, cycle time = 1) N: Adjustment parameters for harmonics 7, 11, 13, 17, 23, 43, 47, ... The key point (know-how) is to control the occurrence state of nonlinear phenomena based on the measurement, analysis, and evaluation of sound pressure data.

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Companynews list (582)

Company information

超音波システム研究所

超音波システム研究所

Service Industry

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
  • Official site
Phone number/address

The Ultrasonic System Research Institute conducts the following activities with its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control): 1) Manufacturing and sales of ultrasonic systems (sound pressure measurement analysis, oscillation control) 2) Consulting services for various equipment (Note): cleaning machines, stirring devices, processing equipment, machine tools, plating devices, welding devices, etc. Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) We manufacture and sell a system that combines the "Ultrasonic Tester NA (recommended type)" for easy measurement and analysis of ultrasonic waves and the "Ultrasonic Oscillation System (1 MHz, 20 MHz)" for easy oscillation control. <Patent Applications Filed> Patent Application No. 2021-125866: Ultrasonic Control (Ultrasonic Oscillation Control Probe) Patent Application No. 2021-159990: Ultrasonic Welding Patent Application No. 2021-161532: Ultrasonic Plating Patent Application No. 2021-171909: Ultrasonic Processing Patent Application No. 2021-175568: Flow-type Ultrasonic Cleaning Some of the manufacturing technology for the ultrasonic oscillation control probe is described in Patent Application No. 2021-125866. Patent Application No. 2023-195514: Ultrasonic Plating Using Megahertz Ultrasonic Waves and Fine Bubbles.

Product/Service List (153)

The related categories of Non-destructive testing

  • others
  • Surveys, Measurements, and Services
  • Surveying, measuring and analysis equipment
  • Other analytical equipment
  • Investigation, testing and inspection
  • Non-destructive testing
          

Inquire About This Product

  • Contact Us Online
  • Download catalog

Products

  • Search for Products

Company

  • Search for Companies

Special Features

  • Special Features

Ranking

  • Overall Products Ranking
  • Overall Company Ranking

support

  • site map
IPROS
  • privacy policy Regarding external transmission of information
  • terms of service
  • About Us
  • Careers
  • Advertising
COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
Please note that the English text on this page is automatically translated and may contain inaccuracies.