Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.
Application technology for ultrasonic sound pressure measurement, analysis, control, and evaluation systems.
The Ultrasonic System Research Institute has developed technology to control resonance and nonlinear phenomena in the propagation state of surface acoustic waves through the control of ultrasonic oscillation, using a combination of low and high frequencies. By utilizing new ultrasonic propagation materials (such as stainless steel wire and titanium straws), efficient ultrasonic applications tailored to specific purposes become possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology controls the complex changes in surface acoustic waves according to the intended use. Practically, by using multiple (two types of) ultrasonic probes to generate multiple (two types of) oscillations (sweep oscillation and pulse oscillation), complex vibration phenomena (original nonlinear resonance phenomena) are created, achieving high-frequency propagation states at high sound pressure or low-frequency propagation states tailored to the desired natural frequency. In particular, by optimizing the vibration characteristics of tanks and pumps with megahertz ultrasound, efficient ultrasonic control is realized (propagating through 3000 liters of cleaning solution at a 30W output).
Inquire About This Product
basic information
In nano-level applications, efficient ultrasonic manipulation through ultrasonic oscillation at 1 megahertz, including frequency changes of over 100 megahertz, has been realized. This technology is based on the measurement and analysis of sound pressure (nonlinear phenomena) and utilizes the acoustic properties and interactions of surface elastic waves and ultrasonic propagation tools, forming a dynamic control system technology for ultrasound. If you are interested, please contact us via email. We will manufacture ultrasonic probes that enable control of ultrasonic propagation states from 500 Hz to over 700 MHz, tailored to the usage level and purpose of ultrasonic cleaning machines. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 700 MHz - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we can achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control.
Price range
Delivery Time
Applications/Examples of results
2008. 8 Established the Ultrasonic System Research Institute ... 2012. 1 Started manufacturing and selling ultrasonic measurement and analysis systems (Ultrasonic Tester NA) ... 2024. 2 Developed surface treatment technology using megahertz ultrasound 2024. 4 Developed optimization technology for resonance phenomena and nonlinear phenomena 2024. 5 Developed optimization technology related to the combination of sound and ultrasound 2024. 6 Developed optimization and evaluation technology concerning tanks, ultrasound, and liquid circulation 2024. 7 Developed an ultrasonic probe using components with iron plating on polyimide film 2024. 8 Developed a "megahertz ultrasound control" method applying Shannon's juggling theorem 2024. 9 Developed acoustic flow control technology using a portable ultrasonic cleaner 2024. 10 Developed "vibration technology" utilizing megahertz ultrasound 2024. 10 Developed an ultrasonic oscillation control probe using a stainless steel vacuum double-structure container 2024. 11 Developed megahertz flow-type ultrasound (underwater shower) technology 2024. 11 Developed ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics 2024. 12 Developed nonlinear oscillation control technology for ultrasonic probes
Detailed information
-
Improvement technology for ultrasonic cleaning machines based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaning machines based on the analysis of sound pressure measurement of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaning machines based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.
-
Improvement technology for ultrasonic cleaning machines based on sound pressure measurement analysis of nonlinear phenomena.
catalog(51)
Download All Catalogs
























News about this product(28)
Company information
The Ultrasonic System Research Institute conducts the following activities with its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control): 1) Manufacturing and sales of ultrasonic systems (sound pressure measurement analysis, oscillation control) 2) Consulting services for various equipment (Note): cleaning machines, stirring devices, processing equipment, machine tools, plating devices, welding devices, etc. Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) We manufacture and sell a system that combines the "Ultrasonic Tester NA (recommended type)" for easy measurement and analysis of ultrasonic waves and the "Ultrasonic Oscillation System (1 MHz, 20 MHz)" for easy oscillation control. <Patent Applications Filed> Patent Application No. 2021-125866: Ultrasonic Control (Ultrasonic Oscillation Control Probe) Patent Application No. 2021-159990: Ultrasonic Welding Patent Application No. 2021-161532: Ultrasonic Plating Patent Application No. 2021-171909: Ultrasonic Processing Patent Application No. 2021-175568: Flow-type Ultrasonic Cleaning Some of the manufacturing technology for the ultrasonic oscillation control probe is described in Patent Application No. 2021-125866. Patent Application No. 2023-195514: Ultrasonic Plating Using Megahertz Ultrasonic Waves and Fine Bubbles.