List of Vibration and Sound Level Meter products

  • classification:Vibration and Sound Level Meter

46~90 item / All 599 items

Displayed results

For reducing vibrations, swaying, and noise!

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Shock Logger ShockLof298, impact recording device for transportation

  • others
  • Other measuring instruments
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Measuring wideband. It simultaneously measures from low-frequency sounds to noise with one device.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Capable of measuring a wide frequency range from 1 Hz to 20,000 Hz with a single unit.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Designing equipment layout, implementing preemptive measures for noise regulation laws, and addressing noise issues with neighbors!

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

--- Ultrasonic Control System in Megahertz through Control of Nonlinear Phenomena in Ultrasound ---

  • Other Software
  • Non-destructive testing
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2078e.jpg

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.

- Control technology for ultrasonic probe oscillation using a function generator -

  • IoT
  • Non-destructive testing
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0024.jpg

Dynamic control technology of megahertz ultrasound - Nonlinear control technology of ultrasound using multiple function generators.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing multiple function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation with several different waveforms (sweeping). Note: Nonlinear (resonance) phenomena By generating harmonics of the 10th order or higher through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology dynamically controls the changes in surface elastic waves according to the intended application. Ultrasonic Oscillation Control Probe Measurement and analysis range: 1 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Ultrasonic propagation range: 5 kHz to over 900 MHz (analysis confirmed) Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

- Application technology of the Ultrasonic System Research Institute based on ultrasonic measurement and analysis techniques -

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0024.jpg

Dynamic control technology of megahertz ultrasound - Nonlinear control technology of ultrasound using multiple function generators.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing multiple function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation with several different waveforms (sweeping). Note: Nonlinear (resonance) phenomena By generating harmonics of the 10th order or higher through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology dynamically controls the changes in surface elastic waves according to the intended application. Ultrasonic Oscillation Control Probe Measurement and analysis range: 1 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Ultrasonic propagation range: 5 kHz to over 900 MHz (analysis confirmed) Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0024.jpg

Dynamic control technology of megahertz ultrasound - Nonlinear control technology of ultrasound using multiple function generators.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing multiple function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation with several different waveforms (sweeping). Note: Nonlinear (resonance) phenomena By generating harmonics of the 10th order or higher through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology dynamically controls the changes in surface elastic waves according to the intended application. Ultrasonic Oscillation Control Probe Measurement and analysis range: 1 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Ultrasonic propagation range: 5 kHz to over 900 MHz (analysis confirmed) Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

Ultrasonic cleaning technology based on the measurement, analysis, and evaluation of ultrasonic propagation conditions.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0024.jpg

Dynamic control technology of megahertz ultrasound - Nonlinear control technology of ultrasound using multiple function generators.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing multiple function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation with several different waveforms (sweeping). Note: Nonlinear (resonance) phenomena By generating harmonics of the 10th order or higher through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology dynamically controls the changes in surface elastic waves according to the intended application. Ultrasonic Oscillation Control Probe Measurement and analysis range: 1 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Ultrasonic propagation range: 5 kHz to over 900 MHz (analysis confirmed) Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

◢◤Rental◢◤ Remote Monitoring Type Automatic Measurement System for Construction Sites

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for developing a nonlinear control system for ultrasound using feedback analysis techniques based on multivariate autoregressive models.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7845.jpg

Function generator oscillation of ultrasonic transducer.

The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to the propagation state of ultrasound to publish technology that relaxes the surface residual stress of ultrasonic transducers using ultrasound and fine bubbles. This technology for relaxing surface residual stress has made it possible to improve fatigue strength against metal fatigue. As a result, the effects on various components, including ultrasonic tanks, have been demonstrated. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator Measurement Equipment: Example - Oscilloscope By controlling oscillation, we achieve propagation states tailored to the objectives regarding sound pressure level, frequency, and dynamic characteristics. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

■Case Studies of Quality Control IoT for Steel, Non-Ferrous Metals, Pulp and Paper, Coating, and Logistics Warehousing■

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

◢◤Rental◢◤ Remote Monitoring Automatic Measurement System for Construction Sites

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

We will IoT-enable our assets to improve operational efficiency.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

- Technology for controlling nonlinear vibration phenomena through oscillation control of original ultrasonic probes -

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0024.jpg

Dynamic control technology of megahertz ultrasound - Nonlinear control technology of ultrasound using multiple function generators.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing multiple function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation with several different waveforms (sweeping). Note: Nonlinear (resonance) phenomena By generating harmonics of the 10th order or higher through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology dynamically controls the changes in surface elastic waves according to the intended application. Ultrasonic Oscillation Control Probe Measurement and analysis range: 1 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Ultrasonic propagation range: 5 kHz to over 900 MHz (analysis confirmed) Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9285.jpg

Ultrasonic probe sweep oscillation technology - Oscillation control of low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to optimize the nonlinear vibration phenomenon of surface acoustic waves through oscillation control technology based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. Note 1: Original nonlinear resonance phenomenon The resonance phenomenon of ultrasonic vibrations occurs due to the generation of harmonics resulting from original oscillation control of ultrasonic waves, which achieves high amplitude through resonance. The key point is the optimization of the ultrasonic propagation section. Note 2: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Technology for setting oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the ultrasonic propagation characteristics of the device/equipment. 2) Setting of sweep conditions corresponding to the ultrasonic propagation characteristics of the device/equipment. 3) Setting of output levels corresponding to the ultrasonic propagation characteristics of the device/equipment. 4) Adjustment of various interactions corresponding to the ultrasonic propagation characteristics of the device/equipment.

Introducing equipment capable of investigating vibration response and evaluating salt resistance!

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation control probe enabling control of resonance phenomena and nonlinear phenomena - Surface modification technology (relaxation of surface residual stress) through nonlinear oscilla...

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7342.jpg

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)

The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.

Vibration measurement device using ultrasonic waves - Application of megahertz ultrasonic oscillation control technology -

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9149.jpg

Improvement of the ultrasonic cleaning machine (addition of fine bubble generation system for on-site support) - megahertz flow-type ultrasonic using degassed fine bubble generation liquid circulation.

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, utilizing measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system. To utilize (control) the complex and changing conditions of ultrasound in a stable manner according to the purpose, we offer on-site services to add, install, and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. <Example> *Month* *Day* - Consultation and confirmation via email *Month* *Day* 13:00 - 13:30 - Greetings and meeting 13:30 - 16:30 - Confirmation (simple sound pressure measurement) Setting up the degassing fine bubble generation liquid circulation system Operation explanation Confirmation (sound pressure measurement) 16:30 - 17:00 - Discussion based on sound pressure data 17:00 - 18:00 - Reserve A simple analysis of the measurement data will be conducted. A report including the analysis results of the sound pressure data will be submitted one week later.

Contributing to predictive maintenance of production equipment! A vibration sensor with an industry-leading class, operating for 10 years with a built-in battery.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

◢◤Rental◢◤ Remote Monitoring Automatic Measurement System for Construction Sites

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

■Case Studies of Quality Control IoT for Steel, Non-Ferrous Metals, Pulp and Paper, Coating, and Logistics Warehousing■

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Control technology for acoustic flow (nonlinear phenomena) based on sound pressure measurement analysis.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9149.jpg

Improvement of the ultrasonic cleaning machine (addition of fine bubble generation system for on-site support) - megahertz flow-type ultrasonic using degassed fine bubble generation liquid circulation.

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, utilizing measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system. To utilize (control) the complex and changing conditions of ultrasound in a stable manner according to the purpose, we offer on-site services to add, install, and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. <Example> *Month* *Day* - Consultation and confirmation via email *Month* *Day* 13:00 - 13:30 - Greetings and meeting 13:30 - 16:30 - Confirmation (simple sound pressure measurement) Setting up the degassing fine bubble generation liquid circulation system Operation explanation Confirmation (sound pressure measurement) 16:30 - 17:00 - Discussion based on sound pressure data 17:00 - 18:00 - Reserve A simple analysis of the measurement data will be conducted. A report including the analysis results of the sound pressure data will be submitted one week later.

Technology for manufacturing megahertz ultrasonic oscillation control probes - Consulting support for manufacturing know-how.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4265.jpg

Megahertz ultrasonic surface elastic wave control technology

The Ultrasonic System Research Institute has developed dynamic control technology for surface elastic waves, taking into account the propagation characteristics and paths of ultrasound using an original ultrasonic system (sound pressure measurement, analysis, evaluation, and oscillation control). This is a foundational technology for developing a nonlinear control system for ultrasound. It enables various applications tailored to specific purposes (cleaning, processing, stirring, chemical reactions, etc.). We are publishing fundamental experiments on megahertz ultrasound for various materials, structures, and sizes. The key point is the setting of oscillation conditions (waveform, output, frequency, variations, etc.) as a vibration system that allows for efficient control of nonlinear phenomena related to ultrasonic propagation. As specific technologies, we have developed concrete system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks, tools, etc., according to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

Seismic measurement is possible in extreme environments such as locations where power cannot be supplied, environments where electronic components do not operate, and plant equipment with explosion-pr...

  • Other measuring instruments
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

We will exhibit at the Japan Society of Earthquake Engineering Conference - 2024 (December 4-5).

We will exhibit at the Japan Society of Earthquake Engineering Conference 2024 (December 4-5).

Measurement data can be shared! You can consult experts and designers who are located remotely.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A system has been established to accurately support quick initial responses before the shaking arrives, based on emergency earthquake alerts and building integrity assessments!

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The birth of a disaster risk assessment consulting service in collaboration with our "IoT Earthquake Observation Service" and API integration.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
_prw_PI3lg_EtGEvZZK.png

The "IoT Earthquake Observation Service" has been adopted as a new service for disaster risk assessment consulting by the Structural Planning Institute.

The "IoT Earthquake Observation Service" provided by Hakusan Industrial Co., Ltd. has been adopted for the realization of the functions of the "Early Damage Assessment System for Buildings" by Structural Planning Institute Co., Ltd. This is the first case of utilizing the "IoT Earthquake Observation Service," which offers a unified subscription-based service from seismometers to a cloud environment for data utilization, through API integration.

A seismic observation system has been established to monitor aftershocks using seismometers installed underground and on the surface, and to investigate ground amplification characteristics.

  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7342.jpg

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)

The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.

- Development of manufacturing technology for ultrasonic probes that can control ultrasonic propagation conditions above 900 MHz -

  • Analysis and prediction system
  • others
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7194b.jpg

Nonlinear Oscillation Control Technology for Ultrasonic Probes Based on Sound Pressure Measurement Analysis - Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena -

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by optimizing various interactions through the oscillation control of two types of ultrasonic probes from two oscillation channels of a function generator. Note: Nonlinear (resonance) phenomenon The resonance phenomenon that occurs due to the generation of harmonics resulting from original oscillation control, leading to high amplitude ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the control of dynamic changes in surface elastic waves according to their intended use. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz (confirmed by sound pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function generator

Development of "Control Technology for Nonlinear Phenomena" Using a Small Pump

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Technical documentation on the use of fine bubbles (microbubbles) in ultrasonic applications - Deaeration fine bubble generation liquid circulation device.

Technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls acoustic flow of ultrasound— 1-1. Basics of Ultrasound 1-2. Propagation Phenomena of Ultrasonic Vibration 1-3. Fine Bubbles (Microbubbles) *Properties of Microbubbles* 1) Bubbles of about 10μm rise slowly over approximately 3 hours to a height of 1m. 2) The generated bubbles exist independently without coalescing, resulting in excellent dispersion. 3) They have the property of slowly rising in water and adsorbing tiny debris to bring it to the surface. ... 13) The negative potential depends on the pH of the water. 14) Microbubbles have excellent scattering characteristics for ultrasound. 15) Microbubbles collapse as a resonance phenomenon when exposed to ultrasonic irradiation. These properties are expected to be further elucidated in the future, but currently contain many unknown aspects. Propagation Characteristics of Ultrasound 1) Detection of Vibration Modes (Changes in Self-Correlation) 2) Detection of Nonlinear Phenomena (Changes in Bicoherence) 3) Detection of Response Characteristics (Analysis of Impulse Response) 4) Detection of Interactions (Analysis of Power Contribution Rate)

Evaluation technology for ultrasonic propagation conditions based on the measurement and analysis of sound pressure data.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7528.jpg

Cavitation and acoustic flow of ultrasonic phenomena

- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Basic Information The Ultrasonic System Research Institute has developed ultrasonic <dynamic control> technology that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Note: Control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. Compared to previous control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately in practical applications and is proposed and addressed as consulting (with increasing achievements in precision cleaning and stirring at the nano level). Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

- Feedback Analysis Using Autoregressive Models: Analysis of Power Contribution Rates - Effects of Tanks and Ultrasound, Cleaning Materials and Ultrasound, Adjacent Tanks, ...

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20120512b.jpg

"Experiences Regarding Shannon's First Theorem" - Original Technology Development -

* "Shannon's First Theorem" The relationship between information and entropy (as information increases, entropy decreases) Entropy: The average amount of information per symbol from a memoryless information source ... "Experiences Related to Shannon's First Theorem" — Original Technology Development — 1) Theme "Shannon's First Theorem is practically useful based on experience" 1-1) Useful for creating models related to the consideration of basic systems (Note 1) 1-2) Useful as foundational knowledge regarding data and noise (While it may be difficult to understand its necessity in routine development tasks, when considered from the perspective of high originality in research and development of new products, it is very effective as a research viewpoint (Note 2)) Note 1: Example - Consistency and systematization of objects related to system development (e.g., algorithms) Note 2: Example - Cause analysis of machine vibrations, electrical noise, program bugs, and defects...

Surface treatment using ultrasonic surface elastic waves.

  • Water Treatment
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103v3.jpg

Ultrasonic technology" utilizing "statistical thinking.

The Ultrasonic System Research Institute is developing technologies related to effective "measurement, analysis, and evaluation methods" utilizing a <statistical approach> in the field of ultrasonic applications. <About the statistical approach> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract ideas or methods are developed. This is the characteristic of statistical mathematics. (From "Statistics in Science" edited by Hiroshi Akaike) <Reference> The original software (analysis system) developed and created with reference to the program attached in the following book is executed and analyzed using the open-source statistical analysis system "R": "Fluctuations and Rhythms of Living Organisms: An Introduction to Computer Analysis" by Takao Wada, supervised by Hiroshi Akaike, Kodansha. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

Dynamic control of ultrasound to achieve stress relaxation on metal surfaces.

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231211r.jpg

On the main factors (interactions) of ultrasonic utilization.

The Ultrasonic System Research Institute has confirmed that the main factor in the utilization of ultrasound is interaction, based on its achievements and experience in sound pressure measurement analysis related to ultrasonic cleaning and stirring, as well as the development and manufacturing of ultrasonic oscillation control probes tailored to specific purposes in ultrasonic processing and surface treatment. Until now, it was believed that nonlinear phenomena were the main cause; however, due to the nonlinear phenomena of ultrasound, the propagation characteristics of the target objects—such as structure, material, surface condition, and propagation path—dynamically change, making it often difficult to evaluate simply. Therefore, upon examining the causes of this dynamic change, it was confirmed that the factors of dynamic change are the interaction between the propagating ultrasound and the target object. As the cleaning and processing levels reach the nanoscale and above, the generation of harmonics due to nonlinear phenomena also increases from several megahertz to several hundred megahertz. However, the above conditions are very unstable and difficult to reproduce. As a countermeasure, by implementing oscillation control that considers the interactions related to ultrasonic propagation, dynamic ultrasonic control (changes in sound pressure level and propagation frequency range) tailored to the intended use has been realized.

Technology for controlling megahertz sweep oscillation using a technique for adjusting the piezoelectric elements of original ultrasonic probes.

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_8361.jpg

Ultrasonic Nonlinear Oscillation Control Technology Using a Portable Ultrasonic Cleaner (50kHz 50W)

The Ultrasonic System Research Institute has developed a new acoustic flow control technology utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveforms and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

- Combination technology of pulse oscillation and sweep oscillation -

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2078e.jpg

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.

Original product: Ultrasonic control technology based on measurement, analysis, and evaluation of acoustic flow using an ultrasonic tester.

  • pump
  • others
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6756.jpg

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to control the nonlinear vibration phenomena of surface elastic waves through oscillation control techniques based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. The key point is the optimization of the ultrasonic propagation section (Note). Note: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Setting technology for oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the vibration modes of devices and equipment. 2) Setting of sweep conditions corresponding to the vibration modes of devices and equipment. 3) Setting of output levels corresponding to the vibration modes of devices and equipment. To achieve this, it is important to evaluate the characteristics related to ultrasonic propagation conditions through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation). 2) Detection of nonlinear phenomena (changes in bispectrum). 3) Detection of response characteristics (impulse response). 4) Detection of interactions (power contribution rate).

New ultrasonic dynamic control technology

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20120512b.jpg

"Experiences Regarding Shannon's First Theorem" - Original Technology Development -

* "Shannon's First Theorem" The relationship between information and entropy (as information increases, entropy decreases) Entropy: The average amount of information per symbol from a memoryless information source ... "Experiences Related to Shannon's First Theorem" — Original Technology Development — 1) Theme "Shannon's First Theorem is practically useful based on experience" 1-1) Useful for creating models related to the consideration of basic systems (Note 1) 1-2) Useful as foundational knowledge regarding data and noise (While it may be difficult to understand its necessity in routine development tasks, when considered from the perspective of high originality in research and development of new products, it is very effective as a research viewpoint (Note 2)) Note 1: Example - Consistency and systematization of objects related to system development (e.g., algorithms) Note 2: Example - Cause analysis of machine vibrations, electrical noise, program bugs, and defects...

Filter

classification
Delivery Time
Location