iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35534items
    • Facilities
      Facilities
      56041items
    • Lighting and Interior
      Lighting and Interior
      17351items
    • Common materials
      Common materials
      36690items
    • Civil Engineering Materials
      Civil Engineering Materials
      9546items
    • Construction, work and methods
      Construction, work and methods
      27333items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29205items
    • IT/Software
      IT/Software
      33778items
    • others
      others
      76641items
    • Store and facility supplies
      Store and facility supplies
      4409items
    • Office and commercial supplies
      Office and commercial supplies
      11496items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6778items
    • Energy and Resources
      Energy and Resources
      11669items
  • Search for companies by industry

    • Information and Communications
      7217
    • others
      7040
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4659
    • Trading company/Wholesale
      3001
    • Other construction industries
      2449
    • Electrical equipment construction business
      641
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      465
    • Architectural design office
      360
    • retail
      346
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      277
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      250
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. On the main factors (interactions) of ultrasonic utilization.
COMPANY
  • Jul 22, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Jul 22, 2024

On the main factors (interactions) of ultrasonic utilization.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has confirmed that the main factor in the utilization of ultrasound is interaction, based on its achievements and experience in sound pressure measurement analysis related to ultrasonic cleaning and stirring, as well as the development and manufacturing of ultrasonic oscillation control probes tailored to specific purposes in ultrasonic processing and surface treatment. Until now, it was believed that nonlinear phenomena were the main cause; however, due to the nonlinear phenomena of ultrasound, the propagation characteristics of the target objects—such as structure, material, surface condition, and propagation path—dynamically change, making it often difficult to evaluate simply. Therefore, upon examining the causes of this dynamic change, it was confirmed that the factors of dynamic change are the interaction between the propagating ultrasound and the target object. As the cleaning and processing levels reach the nanoscale and above, the generation of harmonics due to nonlinear phenomena also increases from several megahertz to several hundred megahertz. However, the above conditions are very unstable and difficult to reproduce. As a countermeasure, by implementing oscillation control that considers the interactions related to ultrasonic propagation, dynamic ultrasonic control (changes in sound pressure level and propagation frequency range) tailored to the intended use has been realized.
Main factors of ultrasonic utilization (interactions)
Main factors of ultrasonic utilization (interactions)
Main factors of ultrasonic utilization (interactions)
Main factors of ultrasonic utilization (interactions)
  • Inquiry about this news

    Contact Us Online

Related Documents

超音波利用の主要因(相互作用)について.pdf[4850211]

Related product

IMG_2447.jpg

Ultrasonic control technology using two function generators.

New ultrasonic dynamic control technology

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound using two function generators. This technology enables the control of ultrasonic nonlinear phenomena and resonance phenomena through different types of (sweep) oscillation using two different waveforms. By applying this technology, we are developing practical methods to relieve surface residual stress in components and various application technologies, and we provide consulting services. Standard settings: 1) Sweep oscillation control from 3 MHz to 20 MHz 2) Sweep oscillation control from 60 kHz to 13 MHz 3) Ultrasonic dynamic control using a 42 kHz 35W ultrasonic cleaner (realizing dynamic fluctuation-type ultrasonic propagation control) Note: Regarding the surface of the ultrasonic cleaner's tank, surface residual stress relief and uniform treatment are performed using an ultrasonic oscillation control probe and a degassing fine bubble generation liquid circulation device. As a result of the uniformization effect, ultrasonic control using harmonics above 200 MHz has been achieved.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Surface modification treatment of ultrasonic cleaners (consulting)

Relaxation and homogenization treatment of surface residual stress using ultrasound and microbubbles!!

The Ultrasonic System Research Institute has developed (and published) a method to adapt technology for relaxing residual stress near surfaces using ultrasound and microbubbles to ultrasonic transducers. The technology for relaxing residual stress through ultrasound and microbubbles has led to improvements in fatigue strength against metal fatigue, which in turn contributes to the uniformity of the surface of ultrasonic transducers and the efficiency of ultrasonic oscillation, significantly changing the usage of ultrasound. In particular, in ultrasonic cleaning using detergents and solvents, ultrasound has been effectively controlled to achieve reflection, refraction, and transmission according to the acoustic characteristics of the target object by setting conditions tailored to the purpose. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function

  • pump
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic dedicated tank (design, manufacturing, development, consulting support)

Design, development, manufacturing, and technology of ultrasonic equipment tailored to specific purposes based on the measurement and analysis of ultrasonic vibrations—aging treatment of ultrasonic equipment.

Development of a Dedicated Ultrasonic Tank The Ultrasonic System Research Institute has developed a dedicated ultrasonic tank by applying measurement technology related to the propagation state of ultrasound. As a result of using the newly developed dedicated ultrasonic tank for ultrasonic cleaning and surface modification, it has become easier to control not only the utilization efficiency of ultrasound but also the propagation states of cavitation and acceleration. This represents a completely new manufacturing technology (Note) for tanks and surface treatment technology, and it has been confirmed to be a significant achievement through measurement and analysis of the states. Note: Original design, manufacturing, and adjustment methods. This method and technical know-how are offered as part of our consulting services. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response mulnos: power contribution rate

  • pump
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Improvement and enhancement of ultrasonic devices <Measurement, analysis, and evaluation of sound pressure data>

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

Application of ultrasonic sound pressure measurement, analysis, and evaluation technology The Ultrasonic System Research Institute has developed a method for the analysis and evaluation of ultrasound (system technology) that applies measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we will provide measurement, analysis, and evaluation support for ultrasonic devices. For specific support and costs, please contact us via email. *Comment* Currently, regarding the use of ultrasound, I believe it is very difficult to detect and confirm the optimal ultrasonic state for the intended purpose. Therefore, by incorporating "sound pressure data" into the daily management of ultrasound, we aim to resolve the relationship with the final evaluation state (defect rate, yield, etc.) through the accumulation and analysis of statistical data. By analyzing using time-series data analysis technology, effective improvements have been realized. As a result of continuing such improvements, the number of successful cases using low-output ultrasonic oscillation control has increased. We have been manufacturing and selling our original product: ultrasonic systems (sound pressure measurement analysis, oscillation control) since March 2021.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasound oscillation system using original ultrasound probes.

An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). **Technology for Controlling Nonlinear Ultrasonic Vibration Phenomena** 1) Control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator, tailored to the acoustic characteristics of the target object. 2) Manufacturing technology for an ultrasonic oscillation control probe that enables control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for an ultrasonic measurement probe that allows for the measurement of changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasonic waves according to specific objectives. Note: The dynamic control of ultrasonic waves is performed based on the analysis and evaluation of sound pressure data related to nonlinear phenomena, considering the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control. (Sound pressure measurement, analysis, confirmation, and evaluation are conducted using an ultrasonic tester.)

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Development of dynamic control technology for ultrasound based on sound pressure measurement analysis.

Dynamic control of ultrasound to achieve stress relaxation on metal surfaces.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing two function generators. By generating oscillations with two different waveforms (sweep), we have achieved a technique to control the nonlinear phenomena of ultrasound. Note: The generation of (10th order and higher) harmonics caused by original oscillation control is realized by resonating with low-frequency vibration phenomena, resulting in the generation of high-amplitude harmonics, which is a nonlinear (resonance) phenomenon of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic control of surface elastic wave changes according to the intended application. Practically, multiple (two types of) ultrasonic probes generate multiple (two types of) oscillations (sweep oscillation, pulse oscillation), which create complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure propagation states at high frequencies or low sound pressure levels at frequencies matched to the desired natural frequency.

  • Analysis and prediction system
  • Non-destructive testing
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103v1.jpg

Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.

Application technology for ultrasonic sound pressure measurement, analysis, control, and evaluation systems.

The Ultrasonic System Research Institute has developed technology to control resonance and nonlinear phenomena in the propagation state of surface acoustic waves through the control of ultrasonic oscillation, using a combination of low and high frequencies. By utilizing new ultrasonic propagation materials (such as stainless steel wire and titanium straws), efficient ultrasonic applications tailored to specific purposes become possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology controls the complex changes in surface acoustic waves according to the intended use. Practically, by using multiple (two types of) ultrasonic probes to generate multiple (two types of) oscillations (sweep oscillation and pulse oscillation), complex vibration phenomena (original nonlinear resonance phenomena) are created, achieving high-frequency propagation states at high sound pressure or low-frequency propagation states tailored to the desired natural frequency. In particular, by optimizing the vibration characteristics of tanks and pumps with megahertz ultrasound, efficient ultrasonic control is realized (propagating through 3000 liters of cleaning solution at a 30W output).

  • pump
  • Septic tank equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231231aa.png

Consulting services based on the classification technology of ultrasonic propagation phenomena.

Ultrasonic control technology based on the classification of nonlinear phenomena in which ultrasonic vibrations propagate.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibration propagation by analyzing measurement data of ultrasonic propagation states using bispectral analysis. The method developed in this instance estimates the linear and nonlinear resonance effects based on the dynamic characteristics (changes in nonlinear phenomena) of the main frequencies (power spectrum) related to the ultrasonic propagation state. From previous data analysis, we have been able to classify effective utilization methods into the following four types: 1: Linear type 2: Nonlinear type 3: Mixed type 4: Variable type There are numerous successful cases of device development and control settings based on each of the above types. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: The following tools will be used for analysis. Note: "R" is a free statistical processing language and environment.

  • Other Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Consulting on ultrasonic technology based on sound pressure measurement analysis.

- Technology for controlling oscillations of low-frequency resonance phenomena and high-frequency nonlinear phenomena -

<<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in terms of the response characteristics of ultrasonic vibration phenomena concerning the surface condition of the target object through impulse response characteristics and autocorrelation analysis. 3) The interaction between the oscillation and the target object (cleaning items, cleaning solution, water tank, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analytical method is realized based on past experiences and achievements, adapting the analysis techniques of time series data to the measurement data of ultrasound to capture the dynamic characteristics of complex ultrasonic vibrations. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0431.jpg

Ultrasonic sound pressure measurement analysis (consulting support)

Ultrasound consulting specialized in measurement and analysis of ultrasonic propagation conditions.

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained using ultrasonic testers in chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, drawing on the principles of statistical mathematics. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on good confirmations.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(13)

Ultrasonic oscillation system of megahertz ultrasonic (US-2024XXXX specifications)

Ultrasonic oscillation system of megahertz ultrasonic (US-2024XXXX specifications)

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Precision cleaning technology using megahertz ultrasonic waves - Case study in the plating process.

Precision cleaning technology using megahertz ultrasonic waves - Case study in the plating process.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface treatment Ver2 using sweep oscillation control from 3 MHz to 20 MHz.

Surface treatment Ver2 using sweep oscillation control from 3 MHz to 20 MHz.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic technology for the maintenance and upkeep of piping systems.

Ultrasonic technology for the maintenance and upkeep of piping systems.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation device (optimization technology for cavitation and acoustic flow)

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation device (optimization technology for cavitation and acoustic flow)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic Control Technology of Acoustic Flow - Ver3

Dynamic Control Technology of Acoustic Flow - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic control technology of ultrasound tailored to the purpose of use.

Dynamic control technology of ultrasound tailored to the purpose of use.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic system technology based on ultrasonic model.

Ultrasonic system technology based on ultrasonic model.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization technology for ultrasonic tanks and liquid circulation.

Optimization technology for ultrasonic tanks and liquid circulation.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Control technology for ultrasonic cleaning machines based on sound pressure measurement and analysis.

Control technology for ultrasonic cleaning machines based on sound pressure measurement and analysis.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Image of wireless set usage

Solve your problems with wired bed exit sensors by connecting a wireless set linked to the nurse call system!

  • NEW
  • PRODUCT

Do you have any concerns or requests regarding wired bed exit sensors? × Tangling or tripping over wired cables × Cable disconnection or damage × Worrying about forgetting to turn the switch back on after temporarily stopping the sensor. × Wanting to be notified of bed exits even from a location far from the nurse call outlet. Such concerns can be resolved simply by connecting our wireless nurse call linked set to the sensor! Our wireless nurse call linked set allows you to connect bed exit sensors like "Ugo-kun," "Foldable Thin Matta-kun," "Ayumi-chan," and "Just Place Pole-kun" to transmitters and receivers, reducing wiring around the bed area, alleviating concerns about tripping or falling due to cables, and contributing to a tidier work environment. Furthermore, it enables the use of bed exit sensors even from locations far from the nurse call outlet, allowing for more flexible equipment placement.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
A vehicle detection sensor evolved into a round shape, with a load capacity 10 times greater (compared to our company).

A vehicle-specific sensor that is less affected by the natural environment and can be installed on rebar and steel plates!

  • NEW
  • PRODUCT

The "HM-S6" is an embedded park sensor that detects vehicles through changes in magnetic flux and responds to various situations from passing to stationary vehicles. It can be used for the opening and closing of input doors at waste treatment plants, as well as for gates that vehicles pass through and outdoor parking applications. It can also be installed on rebar and steel plates. 【Features】 ■ Resistant to the effects of natural environments such as rain, snow, temperature changes, and geomagnetism ■ Protection rating IP68 reduces the risk of water ingress ■ Ten times the load capacity compared to conventional embedded park sensors (based on our comparison) ■ Can distinguish between vehicles even when they pass continuously ■ Can be installed on rebar and steel plates *For more details, please refer to the PDF document or feel free to contact us.

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Free Materials Available] Introducing Useful Information on Vehicle Detection Sensors!

  • NEW
  • CATALOG

To customers considering the introduction of vehicle detection sensors for parking lot construction, design, or management: Are you facing any challenges with current issues or selecting the right sensors for parking management? Hotron offers free materials that explain how to utilize vehicle detection sensors and the benefits of their introduction! ▽ Here is the lineup of materials ◉ Vehicle Detection Sensor Basic Guide This guide focuses on the challenges and solutions in parking lot operations, introducing the overview of vehicle detection sensors. ◉ Key Points for Introducing Vehicle Detection Sensors This material discusses the benefits of introduction based on installation locations and specific challenges. ◉ Case Studies of Vehicle Detection Sensor Implementation This document presents the challenges before implementation and the results after introduction. For more details, please download from our website and check it out. https://www.hotron.co.jp/download/

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Is the project facing budget overruns, delays, and increased resource load? 'Scope Creep'

"SBS Marketing Co., Ltd." Is your project facing budget overruns, delays, and increased resource strain? 'Scope Creep'

  • NEW
  • OTHER

SBS Marketing Co., Ltd., which provides consulting services related to marketing, sales promotion, and customer acquisition primarily in the BtoB (business-to-business) sector based on practical experience in support companies and business companies, has published a page titled "Project Budget Overruns, Delays, and Increased Resource Burden!? 'Scope Creep'" on November 11, 2025 (Tuesday). 'Scope creep' refers to the gradual expansion of a project's initial scope without following formal processes, leading to delays, budget overruns, and increased resource burdens. The page explains examples of occurrence, the negative impacts that can arise, as well as the causes and countermeasures. (Page Overview: Excerpts) ■ What is 'Scope Creep'? ■ Examples of 'Scope Creep' occurrence ■ Negative impacts caused by 'Scope Creep' ■ Causes of 'Scope Creep' ■ Countermeasures to prevent 'Scope Creep' (DL content only) ▼ For more details, please visit this page. https://sbsmarketing.co.jp/blog/scope-creep-2025-11/

Nov 16, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 議事録はAIで。 RIMO 機能満足度No.1 カスタマイズ性No.1 サービスの安定性No.1 BOXIL SaaS AWARD 2025 ※25年3月 スマートキャンプ株式会社
  • 入力の手間から解放、リアルな営業活動を蓄積 直感的に使える営業支援システム DRIVE SFA
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.