List of Scientific Calculation and Simulation Software products
- classification:Scientific Calculation and Simulation Software
136~180 item / All 1260 items
- Nonlinear control system of megahertz ultrasound using an original ultrasonic oscillation control probe -
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing

Control technology for acoustic flow (nonlinear phenomena) using a portable ultrasonic cleaner.
Ultrasonic Oscillation Control Technology Using Portable Ultrasonic Cleaners and Ultrasonic Probes The Ultrasonic System Research Institute has developed a technology to control "nonlinear phenomena of ultrasound (acoustic flow)" through the combination of portable ultrasonic cleaners and ultrasonic probes for megahertz oscillation control. This technology controls the dynamic characteristics of ultrasound (cavitation and acoustic flow) based on the analysis of changing ultrasonic sound pressure data (nonlinear). Tailored to the structure, material, and acoustic properties of specific objects, it measures and confirms the interactions between ultrasound, the object, the water tank, fixtures, and cleaning solutions to establish optimal oscillation conditions for the ultrasonic probe that suit the intended purpose. Note: Oscillation waveform, oscillation output, control conditions, etc. (e.g., square wave, duty 47%, 13V, sweep oscillation, 3-18 MHz...) Through original measurement and analysis technology for ultrasonic propagation states, we provide consulting services for the evaluation of acoustic flow and a wealth of know-how.
Application technologies of measurement, analysis, and control using ultrasonic testers - sweep oscillation technology and pulse oscillation technology.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Ultrasonic Oscillation Control System (Catalog)
--- Nonlinear Oscillation Control Device Using Megahertz Ultrasonic Waves --- The Ultrasonic System Research Institute manufactures and sells an "Ultrasonic Oscillation System" that allows for easy control of megahertz ultrasonic oscillation. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Oscillation Equipment Examples: Function Generators 1) JDS6600-60M (60 MHz 2ch 266 MSa/s) 2) DG1022Z (25 MHz 2ch 200 MSa/s) 3) FY3224S (24 MHz 2ch 250 MSa/s) 4) MHS-5200A (25 MHz 2ch 200 MSa/s) Recommended Settings ch1 Square Wave 47.1% (duty) 8.0 MHz Output 13.4 V ch2 Square Wave 43.7% (duty) 11.0 MHz Output 13.7 V Sweep Oscillation Conditions Square Wave 3.5 MHz to 15 MHz, 2 seconds
Development of ultrasonic control technology utilizing a combination of sound and ultrasound — oscillation control technology based on sound pressure measurement and analysis evaluation.
- Vibration and Sound Level Meter
- Non-destructive testing
- Scientific Calculation and Simulation Software

Ultrasonic Oscillation Control System (Catalog)
--- Nonlinear Oscillation Control Device Using Megahertz Ultrasonic Waves --- The Ultrasonic System Research Institute manufactures and sells an "Ultrasonic Oscillation System" that allows for easy control of megahertz ultrasonic oscillation. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Oscillation Equipment Examples: Function Generators 1) JDS6600-60M (60 MHz 2ch 266 MSa/s) 2) DG1022Z (25 MHz 2ch 200 MSa/s) 3) FY3224S (24 MHz 2ch 250 MSa/s) 4) MHS-5200A (25 MHz 2ch 200 MSa/s) Recommended Settings ch1 Square Wave 47.1% (duty) 8.0 MHz Output 13.4 V ch2 Square Wave 43.7% (duty) 11.0 MHz Output 13.7 V Sweep Oscillation Conditions Square Wave 3.5 MHz to 15 MHz, 2 seconds
- Technology for controlling oscillations of low-frequency resonance phenomena and high-frequency nonlinear phenomena -
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing

Ultrasonic sound pressure data analysis and evaluation technology (Leading to new ultrasonic applications from ultrasonic sound pressure and vibration data)
The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained from ultrasonic testers chronologically, we establish and verify new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are very effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.
Let's take this opportunity to learn ultrasonic cleaning, which enables the removal of complex shapes and fine dirt, from scratch!
- Other measuring instruments
- others
- Scientific Calculation and Simulation Software

Technical documentation on ultrasonic sound pressure measurement.
<<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasonic waves) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in terms of the response characteristics of ultrasonic vibration phenomena concerning the surface condition of the target object through impulse response characteristics and autocorrelation analysis. 3) The interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasonic waves (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasonic waves based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasonic waves propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on previous experience and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data. The following tool will be used for the analysis: "R," a free statistical processing language and environment.
Application of megahertz ultrasonic oscillation control technology
- Scientific Calculation and Simulation Software
- Other analytical equipment
- others

Technical documentation on ultrasonic sound pressure measurement.
<<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasonic waves) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in terms of the response characteristics of ultrasonic vibration phenomena concerning the surface condition of the target object through impulse response characteristics and autocorrelation analysis. 3) The interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasonic waves (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasonic waves based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasonic waves propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on previous experience and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data. The following tool will be used for the analysis: "R," a free statistical processing language and environment.
Technology for evaluating the dynamic characteristics of original ultrasonic probes—self-correlation, bispectrum, impulse response characteristics, power contribution rate.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Ultrasonic Oscillation Control System (Catalog)
--- Nonlinear Oscillation Control Device Using Megahertz Ultrasonic Waves --- The Ultrasonic System Research Institute manufactures and sells an "Ultrasonic Oscillation System" that allows for easy control of megahertz ultrasonic oscillation. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Oscillation Equipment Examples: Function Generators 1) JDS6600-60M (60 MHz 2ch 266 MSa/s) 2) DG1022Z (25 MHz 2ch 200 MSa/s) 3) FY3224S (24 MHz 2ch 250 MSa/s) 4) MHS-5200A (25 MHz 2ch 200 MSa/s) Recommended Settings ch1 Square Wave 47.1% (duty) 8.0 MHz Output 13.4 V ch2 Square Wave 43.7% (duty) 11.0 MHz Output 13.7 V Sweep Oscillation Conditions Square Wave 3.5 MHz to 15 MHz, 2 seconds
Relaxation Effect of Residual Stress on the Surface of Ultrasonic Transducers — Oscillation of Ultrasonic Transducers Using a Function Generator —
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Ultrasonic Control Model - Control technology for managing the propagation state of ultrasound.
--- Dynamic Control Model of Ultrasound --- << About the Concept >> The Ultrasound Research Institute has developed a model of the state, including phenomena related to the nonlinearity of ultrasound, as a Monoid model in abstract mathematics (category theory). Based on this idea, we are developing and applying specific methods for ultrasound control as a spectral series of knot theory. The control methods adapted to ultrasound phenomena optimize the dynamic changes of cavitation and acoustic flow (acceleration phenomena) according to the intended purpose by feedback analyzing sound pressure measurement data with an autoregressive model. From previous cases and achievements, we have developed techniques for classifying nonlinear phenomena (harmonics, downshifting). Through logical models, we classify effective propagation (utilization) states of ultrasound and realize dynamic control tailored to specific objectives. Ultrasound Propagation Characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Technology for controlling nonlinear phenomena of ultrasound (acoustic flow)
- Scientific Calculation and Simulation Software
- others
- Non-destructive testing

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -
The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.
To stabilize the effects of cavitation, a statistical perspective is essential.
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others

Development of ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics.
We are evaluating the characteristics of ultrasonic equipment according to the purpose of use. <<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation are analyzed and evaluated in relation to the surface condition of the target object through impulse response characteristics and autocorrelation analysis as response characteristics of the ultrasonic vibration phenomenon. 3) We evaluate the interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on past experiences and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data using ultrasonic measurement data.
We manufacture and sell an "oscillation system at 20 MHz" that allows for easy control of megahertz ultrasonic oscillation.
- others
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter

Ultrasonic Oscillation System USP 20MHz Specification Document
Ultrasonic Oscillation System (20MHz Type) USP-2021-20MHz B-1 KKmoon Signal Generator 1 set Function Generator 200MSa/s 25MHz B-2 Original Initial Settings for KKmoon Signal Generator Simple Operation Manual B-3 Ultrasonic Oscillation Control Probes 2 pieces Ultrasonic Probe: Overview Specifications Measurement Range 0.01Hz to 200MHz Oscillation Range 0.5kHz to 25MHz Propagation Range 0.5kHz to over 900MHz (confirmed evaluation through analysis) Material Stainless Steel, LCP Resin, Silicon, Teflon, Glass... Oscillation Equipment Example Function Generator Recommended Settings Example ch1 Square Wave 47.1% (duty) 8.0MHz Output 13.4V ch2 Square Wave 43.7% (duty) 11.0MHz Output 13.7V Sweep Oscillation Conditions Square Wave 3MHz to 18MHz, 2 seconds Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Self-Correlation) 2) Detection of Nonlinear Phenomena (Changes in Bicoherence) 3) Detection of Response Characteristics 4) Detection of Interactions
Ultrasonic oscillation and control technology based on measurement and analysis using an ultrasonic tester.
- Scientific Calculation and Simulation Software
- Non-destructive testing
- others

Ultrasonic control method in megahertz using Shannon's juggling theorem.
The Ultrasonic System Research Institute has developed an application technology based on Shannon's juggling theorem, using classification methods related to ultrasonic propagation phenomena derived from bispectral analysis results of ultrasonic sound pressure measurement data. Specifically, we have developed an original product: a "method for controlling the oscillation of megahertz ultrasonic waves" using an ultrasonic oscillation control system. This technology is offered through consulting proposals and implementation support. To utilize ultrasonic propagation phenomena stably and efficiently, it is necessary to examine the response characteristics and interactions related to conditions other than ultrasonic oscillation devices and ultrasonic transducers, as well as to develop dedicated tools. By examining the oscillation waveforms and control conditions of ultrasonic waves, we can discover new ultrasonic effects (Note 1: original nonlinear resonance phenomena). By utilizing ultrasonic phenomena primarily driven by nonlinear effects according to specific purposes, efficient ultrasonic utilization can be achieved. In particular, there has been an increase in achievements in nano-level ultrasonic technologies (stirring, cleaning, etc.). Note 1: Original nonlinear resonance phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance phenomena.
Ultrasonic oscillation (sweep oscillation) system for controlling nonlinear phenomena
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Original ultrasonic probe oscillation (sweep oscillation, pulse oscillation) system
The Ultrasonic System Research Institute applies manufacturing technology for original ultrasonic probes. We have developed technology to control the nonlinear vibration phenomena of surface acoustic waves based on the acoustic characteristics of the probes, providing consulting services for various ultrasonic utilization technologies. The key point is the optimization of the ultrasonic propagation section tailored to the propagation characteristics and intended use of the surface acoustic waves on the surface of the ultrasonic elements. Note: 1) Relaxation and uniform treatment of surface residual stress using megahertz ultrasound 2) Adjustment of propagation conditions through silicon coating 3) Adjustment of contact points related to the installation state To achieve this, it is important to conduct dynamic characteristic evaluations regarding ultrasonic propagation states through operational verification of the original probe's ultrasonic propagation characteristics (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). In particular, for the transmission and reception of ultrasound using multiple ultrasonic probes (or elements), it is necessary to measure, analyze, and evaluate the dynamically changing response characteristics.
Original ultrasonic probe's "oscillation and control" technology
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others

Surface Residual Stress Relaxation Treatment Using Megahertz Ultrasonic Waves - Control Technology for Surface Elastic Waves through Nonlinear Oscillation Control
The Ultrasonic System Research Institute has developed a technology that applies the control of ultrasound and fine bubbles within a water tank to stimulate the surfaces of various materials and components with megahertz acoustic flow. In particular, the homogenization of surface residual stress has led to many achievements. << Deaeration Fine Bubble (Microbubble) Generation Liquid Circulation Device >> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Bubbles of dissolved gas are produced due to cavitation. The above describes the state of the deaeration liquid circulation device. ... 6) In a stable and controllable state of ultrasound, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz (1-20 MHz) ultrasound. The optimization method for cavitation and acoustic flow achieves effective dynamic control of ultrasound by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasound. By organizing previous consulting responses, sound pressure measurements, and analyses, we have confirmed various know-how (specific methods related to individual objects and devices) and developed usage methods. If you are interested, please contact us via email.
Control of nonlinear phenomena related to megahertz ultrasonic propagation states.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Developed optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.
The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. Compared to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve a dynamic propagation state of ultrasonic waves tailored to specific applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as a consulting service (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: Parameters include: Power spectrum, autocorrelation, bispectrum, power contribution ratio, impulse response characteristics, and others. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions
- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Technology for Achieving Dynamic Control of Ultrasound
- Scientific Calculation and Simulation Software
- Non-destructive testing
- others

Ultrasonic Control Model - Control technology for managing the propagation state of ultrasound.
--- Dynamic Control Model of Ultrasound --- << About the Concept >> The Ultrasound Research Institute has developed a model of the state, including phenomena related to the nonlinearity of ultrasound, as a Monoid model in abstract mathematics (category theory). Based on this idea, we are developing and applying specific methods for ultrasound control as a spectral series of knot theory. The control methods adapted to ultrasound phenomena optimize the dynamic changes of cavitation and acoustic flow (acceleration phenomena) according to the intended purpose by feedback analyzing sound pressure measurement data with an autoregressive model. From previous cases and achievements, we have developed techniques for classifying nonlinear phenomena (harmonics, downshifting). Through logical models, we classify effective propagation (utilization) states of ultrasound and realize dynamic control tailored to specific objectives. Ultrasound Propagation Characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Ultrasonic Sound Pressure Measurement Analysis System - Measurement, Analysis, and Evaluation System Using Original Ultrasonic Probes - (Ultrasonic System Research Institute)
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others

Technology for manufacturing megahertz ultrasonic oscillation control probes - Consulting support for manufacturing know-how -
The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 700 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 700 MHz - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, plastics, glass, etc., we achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, inspection, etc., based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (glass containers, etc.), ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W.
Machining technology using ultrasonic systems (sound pressure measurement analysis, oscillation control).
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others

Development of "vibration measurement, analysis, and evaluation technology" using ultrasonic probes.
The Ultrasonic System Research Institute provides consulting services on the technology of "vibration measurement, analysis, and evaluation" using its original product (ultrasonic sound pressure measurement and analysis system). Based on the achievements in sound pressure measurement and analysis of various ultrasonic devices since 2012, we have developed measurement, analysis, and evaluation technology related to the nonlinear phenomena of ultrasound. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasound propagating on surfaces, we have developed technology that can measure, analyze, and evaluate vibration states from low frequencies (0.1 Hz) to high frequencies (over 750 MHz). We can now measure, analyze, and evaluate various vibrations, including those from buildings and roads, equipment, devices, piping, automobiles, trains, and the moment of vibration when metal melts during welding or instantaneous vibrations during machining. This represents a new method and technology, and various application cases have developed from previous analysis results. In particular, we can continuously collect data for a standard measurement time of 72 hours, allowing for measurement, analysis, and evaluation of very low-frequency vibrations and irregularly fluctuating vibrations.
Technology for controlling nonlinear phenomena of ultrasound.
- Scientific Calculation and Simulation Software
- Analysis and prediction system
- others

Development of optimization and evaluation technology related to water tanks, ultrasonic waves, and liquid circulation - Optimization technology for resonance phenomena and nonlinear phenomena.
The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance phenomena and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. In contrast to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic ultrasonic propagation states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, response characteristics, etc.)
Design and build a virtual factory! Execute simulations to test and optimize the factory's performance.
- Scientific Calculation and Simulation Software
Technology for evaluating the dynamic characteristics of ultrasonic probes.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)
The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.
Improving the disaster prevention management system of the business establishment! It can be utilized for safety measures for neighboring residents, among other things.
- Scientific Calculation and Simulation Software
High-precision simulation software recognized by the world.
- Scientific Calculation and Simulation Software
- Solar power generation equipment
- Solar power generation

Announcement of the Laplace Seminar to be held in January
"Laplace Seminar," a content-rich event introducing our products and solutions, also includes a casual Q&A session. Please join us as a place for information gathering and study. ■Kyoto Venue <Date and Location> Date: January 24, 2020 (Friday) Venue: Laplace System Co., Ltd. Kyoto Headquarters <Seminar Content> Part 1 (14:30–15:30): Overview of Solar Pro products and new features Part 2 (15:45–16:45): Monitoring and output control, etc. Part 3 (17:00–17:30): Individual consultations
AI sees beyond the gaze! Form checks can be done faster than human verification.
- Scientific Calculation and Simulation Software
Ideal for research and verification of skeletal information! An easy-to-use posture estimation AI engine with included hardware.
- Scientific Calculation and Simulation Software
From research to clinical practice, MedCalc transforms medical data into reliable insights.
- Scientific Calculation and Simulation Software