iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35534items
    • Facilities
      Facilities
      56041items
    • Lighting and Interior
      Lighting and Interior
      17353items
    • Common materials
      Common materials
      36689items
    • Civil Engineering Materials
      Civil Engineering Materials
      9545items
    • Construction, work and methods
      Construction, work and methods
      27322items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29197items
    • IT/Software
      IT/Software
      33824items
    • others
      others
      76651items
    • Store and facility supplies
      Store and facility supplies
      4409items
    • Office and commercial supplies
      Office and commercial supplies
      11496items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6778items
    • Energy and Resources
      Energy and Resources
      11669items
  • Search for companies by industry

    • Information and Communications
      7219
    • others
      7040
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4660
    • Trading company/Wholesale
      3001
    • Other construction industries
      2448
    • Electrical equipment construction business
      641
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      465
    • Architectural design office
      360
    • retail
      346
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      277
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      250
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Development of "vibration measurement, analysis, and evaluation technology" using ultrasonic probes.
PRODUCT
  • Mar 06, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Mar 06, 2024

Development of "vibration measurement, analysis, and evaluation technology" using ultrasonic probes.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute provides consulting services on the technology of "vibration measurement, analysis, and evaluation" using its original product (ultrasonic sound pressure measurement and analysis system). Based on the achievements in sound pressure measurement and analysis of various ultrasonic devices since 2012, we have developed measurement, analysis, and evaluation technology related to the nonlinear phenomena of ultrasound. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasound propagating on surfaces, we have developed technology that can measure, analyze, and evaluate vibration states from low frequencies (0.1 Hz) to high frequencies (over 750 MHz). We can now measure, analyze, and evaluate various vibrations, including those from buildings and roads, equipment, devices, piping, automobiles, trains, and the moment of vibration when metal melts during welding or instantaneous vibrations during machining. This represents a new method and technology, and various application cases have developed from previous analysis results. In particular, we can continuously collect data for a standard measurement time of 72 hours, allowing for measurement, analysis, and evaluation of very low-frequency vibrations and irregularly fluctuating vibrations.
Statistical Methods for Ultrasonic Data (Analysis and Evaluation using R Language and Environment)
Statistical Methods for Ultrasonic Data (Analysis and Evaluation using R Language and Environment)
Vibration Measurement, Analysis, and Evaluation Technology Using Ultrasonic Probes
Vibration Measurement, Analysis, and Evaluation Technology Using Ultrasonic Probes
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

超音波を利用した「振動計測・解析・評価技術」.pdf[2960802]

Related Links

Vibration Measurement Technology
"Vibration Measurement Technology" using ultrasound

Related product

20240115abcss.png

Consulting on ultrasonic technology based on sound pressure measurement analysis.

- Technology for controlling oscillations of low-frequency resonance phenomena and high-frequency nonlinear phenomena -

<<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in terms of the response characteristics of ultrasonic vibration phenomena concerning the surface condition of the target object through impulse response characteristics and autocorrelation analysis. 3) The interaction between the oscillation and the target object (cleaning items, cleaning solution, water tank, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analytical method is realized based on past experiences and achievements, adapting the analysis techniques of time series data to the measurement data of ultrasound to capture the dynamic characteristics of complex ultrasonic vibrations. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3543.jpg

Consulting for the development of an ultrasonic cleaning system based on sound pressure data analysis.

Ultrasonic cleaning system that achieves ultrasonic control tailored to the purpose.

This is an effective device using a dedicated ultrasonic tank (original manufacturing method). Due to the high efficiency of ultrasonic utilization, standard tanks lack sufficient strength and durability. Depending on the target and purpose, multiple ultrasonic waves and a degassing fine bubble generation liquid circulation device are controlled based on sound pressure measurement analysis for cleaning, stirring, and surface modification. We propose various combinations and usage (control) methods. The key point is to achieve an ultrasonic propagation state tailored to the target, focusing on the "dissolved oxygen concentration distribution" and "liquid circulation" within the dedicated tank. << Degassing Fine Bubble (Microbubble) Generation Liquid Circulation Device >> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the degassing liquid circulation device. 3) As the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) smaller than 20μ are generated. The above describes the state of the degassing microbubble generation liquid circulation device.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0600a.jpg

A technology for alleviating surface residual stress through the control of megahertz ultrasonic oscillation.

Surface treatment technology using a megahertz ultrasonic oscillation control probe -- Improvement treatment of metal fatigue strength (relaxation and uniformization of surface residual stress) --

The Ultrasonic System Research Institute has developed methods for measuring, analyzing, and evaluating surface residual stress by applying the following technologies: 1) Manufacturing technology for ultrasonic probes 2) Evaluation technology for ultrasonic propagation conditions 3) Surface inspection technology using ultrasound Based on numerous achievements, we believe that various applications are possible as ultrasonic utilization technology, and we are making related technologies publicly available. Specific examples: Surface treatment know-how: Standard settings Output: 13-15V Rectangular wave: Duty 47.1% Sweep range: 500kHz - 13MHz, 2 seconds Settings for low-intensity targets (or long processing times): Output: 1-3V Rectangular wave: Duty 47.1% Sweep range: 300kHz - 3MHz, 1 second (or 100kHz - 5MHz, 1 second) Note: The oscillation conditions can vary significantly due to the ultrasonic propagation characteristics of the target object and the oscillation characteristics of the function generator. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Development technology for control systems based on the original ultrasonic model.

To stabilize the effects of cavitation, a statistical perspective is essential — a technology to optimize nonlinear ultrasonic phenomena according to specific purposes.

<Regarding the Creation of Logical Models> (Using Information Quantity Criteria) 1) Based on various fundamental technologies, clearly recognize the "information data group," DS = (D1, D2, D3), related to the subject, consisting of: D1 = Objective knowledge (theory supported by academic logic) D2 = Empirical knowledge (results obtained so far) D3 = Observational data (current state) and create multiple model proposals from its organizational use. 2) Understand statistical thinking as a method of realizing information acquisition through the composition of the information data group (DS) and the repeated proposal and verification of models based on it. 3) Determine the optimal model by comparing various models using evaluation methods such as AIC. 4) Construct ultrasonic devices and systems based on the created models. 5) Considering time and efficiency, the following responses are proposed: 5-1) Taking into account the "logical model creation matters," create "intuitive models" for multiple people to examine. 5-2) Modify and review the models based on actual data and new information. 5-3) Enter into specific discussions about devices and systems based on models that the review members can agree upon.

  • Other analytical equipment
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1500b.jpg

Ultrasonic system using a function generator

Ultrasonic oscillation (sweep oscillation) system for controlling nonlinear phenomena

The Ultrasonic System Research Institute has developed a technology to control the nonlinear vibration phenomena of surface elastic waves based on the acoustic characteristics of original ultrasonic probes. The key point is the setting of sweep oscillation conditions using two ultrasonic probes (essentially, it cannot be controlled with just one probe for ultrasonic oscillation control. By combining the oscillation settings of the two probes, the occurrence of resonance phenomena and nonlinear phenomena can be controlled). Resonance phenomena and nonlinear phenomena can be controlled within a frequency range tailored to the intended use. In particular, when strong stimulation is required, this is achieved by utilizing low-frequency resonance phenomena (e.g., breaking glass). When high-frequency stimulation is needed, this is achieved by utilizing high-frequency nonlinear phenomena (e.g., 700 MHz stimulation).

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_8960-2.jpg

Ultrasonic probe oscillation method (consulting support for control know-how)

Ultrasonic probe-based sweep oscillation system - a technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed a new control technology for ultrasonic probes using original technology. This is an application technology for measurement systems using the new ultrasonic probe. We provide consulting services for the development, manufacturing, and control methods of dedicated ultrasonic probes tailored to specific purposes. Regarding the characteristics of piezoelectric elements, we develop and manufacture original ultrasonic probes based on analyses that consider elastic wave propagation and various vibration states (modes). For measurements, the probes can be connected to an oscilloscope for use. For oscillation, they can be connected to a function generator. By performing feedback analysis of sound pressure measurement data, it becomes possible to quantify and evaluate nonlinear ultrasonic phenomena (acoustic streaming) and cavitation effects. The ultrasonic probes are "made-to-order" based on the confirmed intended use.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Ultrasound (sweep oscillation, pulse oscillation) system - know-how -

- Technology for controlling nonlinear vibration phenomena through oscillation control of original ultrasonic probes -

The Ultrasonic System Research Institute has developed oscillation control technology based on the acoustic characteristics of probes through the manufacturing technology of original ultrasonic probes. This has evolved into technology for controlling the nonlinear vibration phenomena of surface acoustic waves. The key point is the optimization control method for ultrasonic oscillation control tailored to the propagation characteristics of surface acoustic waves on the surface of ultrasonic elements and their intended use (conditions for combining sweep oscillation and pulse oscillation). To achieve this, it is important to dynamically evaluate the propagation state of ultrasound through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). In particular, it is necessary to measure, analyze, and evaluate the dynamically changing oscillation characteristics of the ultrasonic probe (or element) and the oscillator (function generator) regarding their transmission and reception characteristics. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Measurement, analysis, and evaluation techniques of ultrasound using a statistical approach.

To stabilize the effects of ultrasound, a statistical perspective is essential.

The Ultrasonic System Research Institute is developing technologies related to effective "measurement, analysis, and evaluation methods" using a <statistical approach> concerning the utilization of ultrasound. <About the Statistical Approach> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract thoughts or methods are developed. This is the characteristic of statistical mathematics. - From "Statistics in Science" edited by Hirotsugu Akaike <About Models> Models are constructed with the aim of effectively advancing understanding, prediction, and control regarding the subject. Building an accurate model is difficult, and the examination is always conducted in a form that appropriately "rounds off" the complexity of the subject. In this sense, the process of constructing or building a model requires statistical thinking. <About the Relationship Between Models and Current Systems> (Points to Consider When Reflecting) 1) It is necessary to consider that preconceived notions and experiences may not be correct. 2) To think about the essence of a model, I believe it is effective to utilize category theory.

  • Non-destructive testing
  • Other analytical equipment
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_29771.jpg

Ultrasonic tester NA, which allows for easy measurement and analysis of ultrasonic waves.

Ultrasonic Sound Pressure Measurement Analysis System - Measurement, Analysis, and Evaluation System Using Original Ultrasonic Probes - (Ultrasonic System Research Institute)

This is a measurement system using an ultrasonic probe. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, and is detected as various acoustic performances. Features (Specifications) - Measurement (Analysis) Frequency Range: 0.1 Hz to 200 MHz - Ultrasonic Oscillation: 1 Hz to 1 MHz - Capable of measuring surface vibrations - Continuous measurement for 24 hours is possible - Simultaneous measurement of any two points - Measurement results displayed in graphs - Software for time series data analysis included Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rate) Note: "R" is a free statistical processing language and environment - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
data1.jpg

Machining technology utilizing megahertz ultrasonic vibrations.

Machining technology using ultrasonic systems (sound pressure measurement analysis, oscillation control).

The Ultrasonic System Research Institute has developed "ultrasonic oscillation control (processing) technology" that utilizes the acoustic characteristics (vibration response characteristics and nonlinear phenomena) of objects (tools, target items, etc.) through a sound pressure measurement analysis device (ultrasonic tester) and a megahertz ultrasonic oscillation control probe. With this developed technology, it has become possible to control nonlinear vibration phenomena in target objects through "ultrasonic oscillation and output control," achieving dynamic control of ultrasonic waves (changes in bispectrum). The original ultrasonic oscillation control probe allows for the utilization and control of nonlinear effects of ultrasonic vibrations. This is an effective ultrasonic utilization (control) technology tailored to applications such as processing, cleaning, surface modification, and promoting chemical reactions. There are interactions with the acoustic characteristics of cutting tools (drills, reamers, cutters, knives, etc.) and the size and material of cutting oils, jigs, and target objects, making the analysis (self-correlation, impulse response, contribution rate, bispectrum) complex. However, various optimizations based on the analysis results of sound pressure measurement data become possible.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(12)

Ultrasonic probe-based sweep oscillation control technology (optimization of resonance phenomena and nonlinear phenomena based on acoustic pressure measurement analysis)

Ultrasonic probe-based sweep oscillation control technology (optimization of resonance phenomena and nonlinear phenomena based on acoustic pressure measurement analysis)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

A megahertz ultrasonic oscillation control probe that achieves ultrasonic propagation conditions above 700 MHz (original technology of the Ultrasonic System Research Institute).

A megahertz ultrasonic oscillation control probe that achieves ultrasonic propagation conditions above 700 MHz (original technology of the Ultrasonic System Research Institute).

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Method for controlling the oscillation of an ultrasonic probe capable of controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

Method for controlling the oscillation of an ultrasonic probe capable of controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation control probe enabling ultrasonic propagation conditions above 600 MHz.

Ultrasonic oscillation control probe enabling ultrasonic propagation conditions above 600 MHz.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Vibration measurement, analysis, and evaluation technology using ultrasonic probes with adjustment techniques for ultrasonic elements.

Vibration measurement, analysis, and evaluation technology using ultrasonic probes with adjustment techniques for ultrasonic elements.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System (20 MHz) Catalog

Ultrasonic Oscillation System (20 MHz) Catalog

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear Oscillation Control Technology of Ultrasound - Sweep Oscillation Control Technology Using Original Ultrasound Oscillation Control Probe -

Nonlinear Oscillation Control Technology of Ultrasound - Sweep Oscillation Control Technology Using Original Ultrasound Oscillation Control Probe -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

On the Propagation Phenomenon of Ultrasound - Classification and Evaluation Techniques of Ultrasound through Sound Pressure Measurement Analysis -

On the Propagation Phenomenon of Ultrasound - Classification and Evaluation Techniques of Ultrasound through Sound Pressure Measurement Analysis -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Reference books: Ultrasonic Technology - 1) Ultrasonic Engineering and Applied Technology by B.A. Agranov 2) Introduction to Ultrasound by Eli de Rosenberg.

Reference books: Ultrasonic Technology - 1) Ultrasonic Engineering and Applied Technology by B.A. Agranov 2) Introduction to Ultrasound by Eli de Rosenberg.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Machining technology utilizing ultrasonic vibrations (optimization of machining vibrations with cutting oil and chips).

Machining technology utilizing ultrasonic vibrations (optimization of machining vibrations with cutting oil and chips).

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Non-contact light beam touch sensor 'HA-T401'

Recommended for infection control! Introduction of non-contact sensors for facilities.

  • NEW
  • COMPANY

In recent times, there has been a growing interest in infection control measures and facility hygiene management. Our company offers non-contact sensor products that are recommended for commercial facilities, food factories, and nursing and caregiving facilities. 【Sensors for Automatic Doors】 ● Light Touch Sensor HA-T401 … When you wave your hand in front of the automatic door, the sensor detects the movement and opens or closes the door. This is recommended for making doors with touch switches non-contact. ● Hand Wave Sensor PF-R5, PF-U2, DHS-1 … Opens and closes the automatic door by waving your hand in front of the sensor. ● Foot Switch PF-01S/01D/03S/05 … Opens and closes the automatic door by placing your foot in the opening. 【Access Control System】 ● Face Recognition + Unmanned Temperature Measurement DS Series … Allows for face recognition along with mask detection and body temperature measurement simultaneously. ● Automatic Disinfectant Spray Dispenser PHW-03B … Automatically sprays disinfectant when you wave your hand in front of the sensor. 【Nursing and Care Sensors】 ● Infrared Bed Exit Sensor "Just Place It Pole-kun" … This bed exit sensor is installed next to the bed and notifies via nurse call when the subject enters the detection range. ◎ For more details, please download the catalog or contact us.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
When the sensor detects the car, the rotating light will turn on.

Ideal for entrances and exits of parking lots and stores! Alerts pedestrians of vehicle departures with the light from the rotating lamp! Here is a proposal for a departure warning sensor! Free catalog giveaway.

  • NEW
  • CATALOG

[To the owners of parking lots and parking lot construction companies] "I'm worried about not colliding with pedestrians when exiting the parking lot..." Among vehicle entrances to parking lots, stores, residences, and factories, particularly at entrances facing sidewalks or roadways, there is a risk of dangerous incidents such as collisions with pedestrians or between vehicles. To alleviate such concerns, Hotron proposes a [Vehicle Exit Warning Sensor] that detects vehicle departures using various sensors and alerts the surrounding area with LED lights and buzzers. The system consists of a simple configuration of "sensor" + "controller" + "switching power supply (24V)" + "LED rotating light." *Please note that a separate control panel is required to include the controller and switching power supply (24V) when using the exit warning system. *We kindly ask customers to arrange for the switching power supply (24V), LED rotating light, control panel, circuit breakers, etc. Since it can be retrofitted, it can also be used for existing parking lot entrances. We hope this will contribute to safer vehicle passage for everyone. ◎ For more details, please contact us or download the catalog.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Image of wireless set usage

Solve your problems with wired bed exit sensors by connecting a wireless set linked to the nurse call system!

  • NEW
  • PRODUCT

Do you have any concerns or requests regarding wired bed exit sensors? × Tangling or tripping over wired cables × Cable disconnection or damage × Worrying about forgetting to turn the switch back on after temporarily stopping the sensor. × Wanting to be notified of bed exits even from a location far from the nurse call outlet. Such concerns can be resolved simply by connecting our wireless nurse call linked set to the sensor! Our wireless nurse call linked set allows you to connect bed exit sensors like "Ugo-kun," "Foldable Thin Matta-kun," "Ayumi-chan," and "Just Place Pole-kun" to transmitters and receivers, reducing wiring around the bed area, alleviating concerns about tripping or falling due to cables, and contributing to a tidier work environment. Furthermore, it enables the use of bed exit sensors even from locations far from the nurse call outlet, allowing for more flexible equipment placement.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
A vehicle detection sensor evolved into a round shape, with a load capacity 10 times greater (compared to our company).

A vehicle-specific sensor that is less affected by the natural environment and can be installed on rebar and steel plates!

  • NEW
  • PRODUCT

The "HM-S6" is an embedded park sensor that detects vehicles through changes in magnetic flux and responds to various situations from passing to stationary vehicles. It can be used for the opening and closing of input doors at waste treatment plants, as well as for gates that vehicles pass through and outdoor parking applications. It can also be installed on rebar and steel plates. 【Features】 ■ Resistant to the effects of natural environments such as rain, snow, temperature changes, and geomagnetism ■ Protection rating IP68 reduces the risk of water ingress ■ Ten times the load capacity compared to conventional embedded park sensors (based on our comparison) ■ Can distinguish between vehicles even when they pass continuously ■ Can be installed on rebar and steel plates *For more details, please refer to the PDF document or feel free to contact us.

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 勝てる市場を見極めれば世界に通用する 貴社の商材、展開エリアに合った戦略提案レポートを無料で作成します 5つの設問に答えるだけ!
  • 検査・点検業務のDX化 現場に合わせたカスタマイズ See-Note 点検票・帳票の電子化 現場のペーパーレス化 社内情報の効率化 インフラ点検 製造機器点検 ビル・施設管理 ※導入実績
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.