iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35534items
    • Facilities
      Facilities
      56041items
    • Lighting and Interior
      Lighting and Interior
      17351items
    • Common materials
      Common materials
      36690items
    • Civil Engineering Materials
      Civil Engineering Materials
      9546items
    • Construction, work and methods
      Construction, work and methods
      27333items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29205items
    • IT/Software
      IT/Software
      33797items
    • others
      others
      76641items
    • Store and facility supplies
      Store and facility supplies
      4409items
    • Office and commercial supplies
      Office and commercial supplies
      11496items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6778items
    • Energy and Resources
      Energy and Resources
      11669items
  • Search for companies by industry

    • Information and Communications
      7217
    • others
      7040
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4659
    • Trading company/Wholesale
      3001
    • Other construction industries
      2449
    • Electrical equipment construction business
      641
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      465
    • Architectural design office
      360
    • retail
      346
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      277
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      250
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. An experimental system for controlling chemical reactions through the oscillation control of megahertz ultrasound.
PRODUCT
  • Mar 10, 2022
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Mar 10, 2022

An experimental system for controlling chemical reactions through the oscillation control of megahertz ultrasound.

超音波システム研究所 超音波システム研究所
--- Control of Chemical Reactions through Nonlinear Ultrasonic Phenomena --- The Ultrasonic System Research Institute has developed an experimental device for controlling chemical reactions using ultrasonic waves by utilizing the technology to control nonlinear ultrasonic phenomena (acoustic flow). This technology controls ultrasonic waves (cavitation and acoustic flow) tailored to specific purposes by measuring and confirming the interactions within the container and through ultrasonic control using a megahertz ultrasonic oscillation probe. Note: Ultrasonic Control By setting the oscillation conditions for sweep oscillation and pulse oscillation using two types of nonlinear resonant ultrasonic oscillation probes, it dynamically controls high-frequency propagation states above 30 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). Note: Ultrasonic Control "Precision Cleaning Example" Sweep Oscillation: 70 kHz - 15 MHz, 15 W Pulse Oscillation: 13 MHz, 8 W In particular, the dynamic characteristics of harmonics through acoustic flow control enable reactions and responses at the nano level. This has been applied and developed from the example of dispersing metal powder to nanosize.
Ultrasonic chemical reaction control technology
Ultrasonic chemical reaction control technology
Ultrasonic technology for controlling chemical reactions
Ultrasonic technology for controlling chemical reactions
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

超音波の非線形現象制御による化学反応制御.pdf[2039516]

Related Links

Ultrasonic Control
Method of "Ultrasonic Control" using the juggling theorem

Related product

IMG_9409.jpg

Consulting for Ultrasonic System Development Based on Sound Pressure Measurement Analysis 2

A technology has been developed to control the nonlinear phenomena of ultrasonic vibrations propagating to the target object based on classification techniques of ultrasonic waves and oscillation control.

We provide consulting services for the development of ultrasonic systems utilizing the following device. <<Deaeration Fine Bubble (Microbubble) Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble (microbubble) generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles (microbubbles), and when measuring the fine bubbles (microbubbles), the distribution of ultra-fine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Development technology for ultrasonic systems (consulting support)

Development of an original ultrasonic system utilizing surface elastic wave control technology based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed applied technologies that utilize surface acoustic waves through ultrasonic control. By combining ultrasound and surface acoustic waves, we achieve dynamic control of ultrasonic propagation. The key point is the ability to efficiently control nonlinear phenomena caused by surface acoustic waves. As specific technologies, we have developed system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks and tools, tailored to specific purposes (cleaning, stirring, stress relief, inspection, etc.). As a result of utilizing measurement and analysis techniques for ultrasonic propagation states, we have confirmed the realization of harmonic control and the ability to adjust nonlinear phenomena. Our know-how lies in confirming and responding to the acoustic characteristics of the system (measurement, analysis, evaluation).

  • Secondary steel products
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9355.jpg

Ultrasonic cleaning machine acoustic flow control system (consulting support)

Dynamic Liquid Circulation System of Ultrasonic Cleaners - Acoustic Flow Control

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines propagating in liquid, to set and control the state of ultrasonic cleaning machines according to the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific purposes through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology considering "timbre." Note 2: The know-how involves settings related to the relationships at the boundaries of the cleaning machine, cleaning liquid, and air. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has become possible through degassing, aeration, ultrasound, and elastic waves on the tank surface.

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230412i.jpg

Proposal for a processing method using megahertz ultrasonic oscillation control.

Consulting services for processing technology utilizing megahertz ultrasonic oscillation control - Utilizing nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute provides consulting services for ultrasonic processing technology using its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control). In response to the current state of ultrasonic processing, we propose and implement ultrasonic enhancement and improvement methods based on sound pressure measurement and analysis. Specifically, we will discuss ultrasonic enhancements through the measurement and confirmation of processing machines using our original product: Ultrasonic Tester NA (recommended type), which allows for easy measurement and analysis of ultrasonic waves. In line with the ultrasonic enhancements, we propose the use of our original product: Ultrasonic Oscillation System (1 MHz, 20 MHz), which enables easy oscillation control of ultrasonic waves.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00093.jpg

Optimization Technology for Ultrasound - Optimization Technology for Resonance Phenomena and Nonlinear Phenomena -

Analysis of sound pressure measurement data (autocorrelation, power spectrum, bispectrum, power contribution rate, impulse response, etc.) evaluation and technology.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that enable control of resonance and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). In contrast to existing control technologies, this technology utilizes new measurement and evaluation parameters (note) related to the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic propagation states of ultrasound tailored to specific applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Ultrasonic oscillation and control technology based on measurement and analysis using an ultrasonic tester.

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by utilizing the interactions generated from simultaneously oscillating two types of ultrasonic probes from one oscillation channel of a function generator. Note: Nonlinear (resonance) phenomena refer to the resonance phenomenon that occurs when the generation of harmonics produced by original oscillation control is realized at high amplitudes, resulting in ultrasonic vibration resonance. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic changes of surface elastic waves to be controlled according to their intended use. In practical terms, multiple (two types of) ultrasonic probes generate multiple (two types of) oscillations (sweep oscillation, pulse oscillation), which create complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure at high frequency propagation states, or achieving low frequency propagation states with high sound pressure levels tailored to the desired natural frequency.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

Dynamic control technology of ultrasound through sweeping oscillation of multiple ultrasonic probes.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation through the measurement and analysis of ultrasonic propagation states. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology dynamically controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) related to the propagation state of the ultrasound, based on the dynamic characteristics (changes in nonlinear phenomena). From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1. Two types of sweep oscillation control (linear type) 2. Three types of sweep oscillation control (nonlinear type) 3. Four types of sweep oscillation control (mixed type) 4. Dynamic control (variable type) based on the combinations above. Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1. Linear variable control type 2. Nonlinear variable control type 3. Mixed variable control type (dynamic variable type)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9408.jpg

Surface residual stress relaxation and uniformization technology for ultrasonic transducers.

A technology for alleviating and equalizing the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system.

The Ultrasonic System Research Institute has published a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to relax the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system. This technology for relaxing surface residual stress enables the improvement of fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to achieve effective ultrasonic irradiation conditions through the setting, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology will be offered as a consulting service. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic properties, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Special Construction Method
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
0000.jpg

Ultrasonic cleaner design, manufacturing, and development consulting.

Application of measurement, analysis, and evaluation techniques related to ultrasonic propagation conditions — Providing know-how for optimal control of ultrasound.

The Ultrasonic System Research Institute has developed design and manufacturing technology for ultrasonic dedicated tanks by applying measurement and analysis techniques related to ultrasonic propagation conditions. With the technology developed this time, we can achieve efficient utilization of ultrasound suitable for ultrasonic cleaning and surface modification, as well as dynamic control of cavitation and acoustic flow, and propagation conditions for target objects, for ultrasonic dedicated tanks ranging from a maximum length of 3 cm (liquid volume 5 cc) to 600 cm (liquid volume 8000 liters), tailored to specific purposes. In conventional tank (or transducer) design and manufacturing, insufficient consideration of acoustic characteristics often leads to uneven and unstable phenomena due to interference and attenuation of vibrations, making ultrasonic lifespan and tank troubles more likely to occur. This technology can detect issues (various distributions of cleaning solutions, installation methods of tanks and transducers) even in existing tanks and transducers, allowing for improvements and enhancements. --- Provided Know-How --- 0) Design and manufacturing methods for devices 1) ON/OFF control of ultrasound 2) ON/OFF control of liquid circulation 3) Provision of optimization know-how 4) Methods for utilizing megahertz ultrasound

  • pump
  • Water Treatment Plant
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic dedicated tank (design, manufacturing, development, consulting support)

Design, development, manufacturing, and technology of ultrasonic equipment tailored to specific purposes based on the measurement and analysis of ultrasonic vibrations—aging treatment of ultrasonic equipment.

Development of a Dedicated Ultrasonic Tank The Ultrasonic System Research Institute has developed a dedicated ultrasonic tank by applying measurement technology related to the propagation state of ultrasound. As a result of using the newly developed dedicated ultrasonic tank for ultrasonic cleaning and surface modification, it has become easier to control not only the utilization efficiency of ultrasound but also the propagation states of cavitation and acceleration. This represents a completely new manufacturing technology (Note) for tanks and surface treatment technology, and it has been confirmed to be a significant achievement through measurement and analysis of the states. Note: Original design, manufacturing, and adjustment methods. This method and technical know-how are offered as part of our consulting services. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response mulnos: power contribution rate

  • pump
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Improvement and enhancement of ultrasonic devices <Measurement, analysis, and evaluation of sound pressure data>

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

Application of ultrasonic sound pressure measurement, analysis, and evaluation technology The Ultrasonic System Research Institute has developed a method for the analysis and evaluation of ultrasound (system technology) that applies measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we will provide measurement, analysis, and evaluation support for ultrasonic devices. For specific support and costs, please contact us via email. *Comment* Currently, regarding the use of ultrasound, I believe it is very difficult to detect and confirm the optimal ultrasonic state for the intended purpose. Therefore, by incorporating "sound pressure data" into the daily management of ultrasound, we aim to resolve the relationship with the final evaluation state (defect rate, yield, etc.) through the accumulation and analysis of statistical data. By analyzing using time-series data analysis technology, effective improvements have been realized. As a result of continuing such improvements, the number of successful cases using low-output ultrasonic oscillation control has increased. We have been manufacturing and selling our original product: ultrasonic systems (sound pressure measurement analysis, oscillation control) since March 2021.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(17)

Ultrasound, Microbubbles, and Surface Elastic Waves - Surface Treatment Technology -

Ultrasound, Microbubbles, and Surface Elastic Waves - Surface Treatment Technology -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology of ultrasonic systems based on sound pressure measurement analysis.

Development technology of ultrasonic systems based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation (Sweep Oscillation, Pulse Oscillation) System - Know-How 1 -

Ultrasonic Oscillation (Sweep Oscillation, Pulse Oscillation) System - Know-How 1 -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Function generator oscillation of ultrasonic transducer (megahertz sweep oscillation technology) - Ver5

Function generator oscillation of ultrasonic transducer (megahertz sweep oscillation technology) - Ver5

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound System Specification Document (for *** Co.) - Ultrasound Sound Pressure Measurement, Analysis, Evaluation, and Oscillation Control System -

Ultrasound System Specification Document (for *** Co.) - Ultrasound Sound Pressure Measurement, Analysis, Evaluation, and Oscillation Control System -

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Publication of achievements in the use of ultrasound and microbubbles: Development of iron plating treatment technology.

Publication of achievements in the use of ultrasound and microbubbles: Development of iron plating treatment technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for optimizing various interactions through analysis of ultrasonic sound pressure data.

Technology for optimizing various interactions through analysis of ultrasonic sound pressure data.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation system.

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation system.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for achieving ultrasonic propagation conditions above 900 MHz.

Technology for achieving ultrasonic propagation conditions above 900 MHz.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Utilization Technology of Megahertz Ultrasonic Waves - Oscillation Control Using Original Ultrasonic Probes -

Utilization Technology of Megahertz Ultrasonic Waves - Oscillation Control Using Original Ultrasonic Probes -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic Control Technology of Megahertz Ultrasonic - Ver2

Dynamic Control Technology of Megahertz Ultrasonic - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Image of wireless set usage

Solve your problems with wired bed exit sensors by connecting a wireless set linked to the nurse call system!

  • NEW
  • PRODUCT

Do you have any concerns or requests regarding wired bed exit sensors? × Tangling or tripping over wired cables × Cable disconnection or damage × Worrying about forgetting to turn the switch back on after temporarily stopping the sensor. × Wanting to be notified of bed exits even from a location far from the nurse call outlet. Such concerns can be resolved simply by connecting our wireless nurse call linked set to the sensor! Our wireless nurse call linked set allows you to connect bed exit sensors like "Ugo-kun," "Foldable Thin Matta-kun," "Ayumi-chan," and "Just Place Pole-kun" to transmitters and receivers, reducing wiring around the bed area, alleviating concerns about tripping or falling due to cables, and contributing to a tidier work environment. Furthermore, it enables the use of bed exit sensors even from locations far from the nurse call outlet, allowing for more flexible equipment placement.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
A vehicle detection sensor evolved into a round shape, with a load capacity 10 times greater (compared to our company).

A vehicle-specific sensor that is less affected by the natural environment and can be installed on rebar and steel plates!

  • NEW
  • PRODUCT

The "HM-S6" is an embedded park sensor that detects vehicles through changes in magnetic flux and responds to various situations from passing to stationary vehicles. It can be used for the opening and closing of input doors at waste treatment plants, as well as for gates that vehicles pass through and outdoor parking applications. It can also be installed on rebar and steel plates. 【Features】 ■ Resistant to the effects of natural environments such as rain, snow, temperature changes, and geomagnetism ■ Protection rating IP68 reduces the risk of water ingress ■ Ten times the load capacity compared to conventional embedded park sensors (based on our comparison) ■ Can distinguish between vehicles even when they pass continuously ■ Can be installed on rebar and steel plates *For more details, please refer to the PDF document or feel free to contact us.

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Free Materials Available] Introducing Useful Information on Vehicle Detection Sensors!

  • NEW
  • CATALOG

To customers considering the introduction of vehicle detection sensors for parking lot construction, design, or management: Are you facing any challenges with current issues or selecting the right sensors for parking management? Hotron offers free materials that explain how to utilize vehicle detection sensors and the benefits of their introduction! ▽ Here is the lineup of materials ◉ Vehicle Detection Sensor Basic Guide This guide focuses on the challenges and solutions in parking lot operations, introducing the overview of vehicle detection sensors. ◉ Key Points for Introducing Vehicle Detection Sensors This material discusses the benefits of introduction based on installation locations and specific challenges. ◉ Case Studies of Vehicle Detection Sensor Implementation This document presents the challenges before implementation and the results after introduction. For more details, please download from our website and check it out. https://www.hotron.co.jp/download/

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[New Product] The inspection compact line lighting (linear) LLRJ has been enhanced with options such as a handle.

  • NEW
  • PRODUCT

【New Product Announcement】 Two new optional units have been added to the inspection compact line lighting (linear) LLRJ. The compact and versatile linear lighting can now also be used as a handheld type with a handle attachment. Since its release, the conventional linear lighting LLRJ series has received positive feedback for being "lightweight, compact, and easy to introduce." Now, two new optional units have been added to the lineup, in addition to the existing "1. Coaxial Downlight Unit." The new additions are "2. Handheld Unit" and "3. Slit Unit." This allows for even more flexible use according to different applications and work environments. Please take a look at the product detail page for the LLRJ series, which has enhanced versatility. ● Optional Units 1. Coaxial Downlight Unit 2. Handheld (vertical type, horizontal type) 3. Slit Unit *The image shows the handheld horizontal type.

Nov 17, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 議事録はAIで。 RIMO 機能満足度No.1 カスタマイズ性No.1 サービスの安定性No.1 BOXIL SaaS AWARD 2025 ※25年3月 スマートキャンプ株式会社
  • 12/14までに無料掲載を申し込むだけ 抽選で20名様にAmazonギフトカード5,000円分プレゼント!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.