- Publication year : 2025
1~6 item / All 6 items
Displayed results
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationContact this company
Contact Us OnlineBefore making an inquiry
Download PDF1~6 item / All 6 items
The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to the propagation state of ultrasound to publish technology that relaxes the surface residual stress of ultrasonic transducers using ultrasound and fine bubbles. This technology for relaxing surface residual stress has made it possible to improve fatigue strength against metal fatigue. As a result, the effects on various components, including ultrasonic tanks, have been demonstrated. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmation of acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator Measurement Equipment: Example - Oscilloscope By controlling oscillation, we achieve propagation states tailored to the objectives regarding sound pressure level, frequency, and dynamic characteristics. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing multiple function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation with several different waveforms (sweeping). Note: Nonlinear (resonance) phenomena By generating harmonics of the 10th order or higher through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology dynamically controls the changes in surface elastic waves according to the intended application. Ultrasonic Oscillation Control Probe Measurement and analysis range: 1 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Ultrasonic propagation range: 5 kHz to over 900 MHz (analysis confirmed) Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe Ultrasonic System Research Institute conducts consulting related to the use of ultrasound by utilizing a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained using ultrasonic testers in a time series, we have developed a new evaluation standard (nonlinear phenomenon analysis parameters) that indicates the state of ultrasound suitable for the purpose. Note: - Nonlinear characteristics (harmonic generation characteristics) - Response characteristics - Fluctuation characteristics - Effects due to interactions Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to optimize the nonlinear vibration phenomenon of surface acoustic waves through oscillation control technology based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. Note 1: Original nonlinear resonance phenomenon The resonance phenomenon of ultrasonic vibrations occurs due to the generation of harmonics resulting from original oscillation control of ultrasonic waves, which achieves high amplitude through resonance. The key point is the optimization of the ultrasonic propagation section. Note 2: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Technology for setting oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the ultrasonic propagation characteristics of the device/equipment. 2) Setting of sweep conditions corresponding to the ultrasonic propagation characteristics of the device/equipment. 3) Setting of output levels corresponding to the ultrasonic propagation characteristics of the device/equipment. 4) Adjustment of various interactions corresponding to the ultrasonic propagation characteristics of the device/equipment.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationThe Ultrasonic System Research Institute has developed ultrasonic control technology by applying the "Mathematical Theory of Communication" (Claude E. Shannon) to ultrasound. The developed technology utilizes ultrasonic sound pressure measurement, analysis, and evaluation techniques to adapt the propagation characteristics of ultrasound (dynamic characteristics) to the ensemble (entropy) of communication theory. Unlike the previous "technical problems" related to communication, this was developed as a technical application research addressing the "semantic problems" and "effect problems" related to ultrasonic phenomena. Furthermore, through the "evaluation technology for ultrasonic devices" at the Ultrasonic System Research Institute, concrete results using this method have been confirmed. For more details, we are responding and expanding this as a consulting business.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registrationApplication of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, utilizing measurement, analysis, and control technology related to the nonlinearity of ultrasound. Using this technology, we are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system. To utilize (control) the complex and changing conditions of ultrasound in a stable manner according to the purpose, we offer on-site services to add, install, and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. <Example> *Month* *Day* - Consultation and confirmation via email *Month* *Day* 13:00 - 13:30 - Greetings and meeting 13:30 - 16:30 - Confirmation (simple sound pressure measurement) Setting up the degassing fine bubble generation liquid circulation system Operation explanation Confirmation (sound pressure measurement) 16:30 - 17:00 - Discussion based on sound pressure data 17:00 - 18:00 - Reserve A simple analysis of the measurement data will be conducted. A report including the analysis results of the sound pressure data will be submitted one week later.
Added to bookmarks
Bookmarks listBookmark has been removed
Bookmarks listYou can't add any more bookmarks
By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.
Free membership registration