iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35537items
    • Facilities
      Facilities
      56659items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37011items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31844items
    • others
      others
      84511items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11605items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6980
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Optimization Process of Cavitation and Acoustic Flow - Control Technology of Original Ultrasonic System -
COMPANY
  • Aug 16, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Aug 16, 2024

Optimization Process of Cavitation and Acoustic Flow - Control Technology of Original Ultrasonic System -

超音波システム研究所 超音波システム研究所
--Abstract Algebra Model and Ultrasonic Experimentation and Examination Cycle-- (Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena) The Ultrasonic System Research Institute has developed ultrasonic <dynamic control> technology that optimizes the interaction of ultrasonic vibrations based on various analytical results of ultrasonic propagation states obtained through an original ultrasonic system (sound pressure measurement analysis and oscillation control) using an abstract algebra model. Note: Control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. Compared to previous control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we are proposing and responding to it as a consulting service (there is an increasing track record in precision cleaning, stirring, and processing at the nano level). Note: Parameters: Power spectrum, autocorrelation, bispectrum, power contribution ratio, impulse response characteristics, and others.
The process of cavitation and acoustic flow.
The process of cavitation and acoustic flow.
The process of cavitation and acoustic flow.
The process of cavitation and acoustic flow.
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

キャビテーションと音響流のプロセスVer4.pdf[4868149]

Related Links

Ultrasonic Control
Method of "Ultrasonic Control" using the juggling theorem

Related product

IMG_1673.jpg

Consulting services based on sound pressure measurement analysis using ultrasonic technology.

Consulting on ultrasonic cleaning technology using optimization techniques for cavitation and acoustic flow.

The Ultrasonic System Research Institute has developed a technology that applies "measurement, analysis, and control" techniques related to the nonlinearity of ultrasound to analyze and evaluate the dynamic characteristics of ultrasonic vibrations propagating through various media (elastic bodies, liquids, gases). This technology optimizes interactions related to cleaning objects, tools, ultrasonic transducers, water tanks, and liquid circulation according to specific objectives. By utilizing ultrasonic oscillation control probes and ultrasonic testers, we have developed optimization techniques for ultrasonic applications through the examination of various relationships and response characteristics (Note: power contribution rate, impulse response, etc.) based on previous oscillation, measurement, and analysis. Regarding the measurement and analysis of ultrasound, the setting of sampling time and other parameters utilizes original simulation technology. This technology is provided as consulting services for the optimization of ultrasonic systems (cleaning, stirring, processing, etc.).

  • Other analytical equipment
  • others
  • Traceability

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic dedicated tank (design, manufacturing, development, consulting support)

Design, development, manufacturing, and technology of ultrasonic equipment tailored to specific purposes based on the measurement and analysis of ultrasonic vibrations—aging treatment of ultrasonic equipment.

Development of a Dedicated Ultrasonic Tank The Ultrasonic System Research Institute has developed a dedicated ultrasonic tank by applying measurement technology related to the propagation state of ultrasound. As a result of using the newly developed dedicated ultrasonic tank for ultrasonic cleaning and surface modification, it has become easier to control not only the utilization efficiency of ultrasound but also the propagation states of cavitation and acceleration. This represents a completely new manufacturing technology (Note) for tanks and surface treatment technology, and it has been confirmed to be a significant achievement through measurement and analysis of the states. Note: Original design, manufacturing, and adjustment methods. This method and technical know-how are offered as part of our consulting services. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response mulnos: power contribution rate

  • pump
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6756.jpg

Flow-type ultrasonic control technology using a small pump

Original product: Ultrasonic control technology based on measurement, analysis, and evaluation of acoustic flow using an ultrasonic tester.

The Ultrasonic System Research Institute has developed a "flow-type ultrasonic (acoustic flow) control technology" that dynamically controls the propagation state of ultrasound (acoustic flow) through liquid circulation using a small pump. By using an ultrasonic tester to analyze the complex changes in flow and ultrasound, including the interactions of the water tank, liquid (microbubbles), and ultrasonic transducer, this system technology allows for the control of acoustic flow changes tailored to specific applications. In practical terms, it is a method for optimizing various interactions and vibration modes while considering the installation state of the liquid circulation device and the surface elastic waves of the target object, enabling ON/OFF control (or control of flow rate, flow velocity, etc.) of the current liquid circulation device. In particular, by utilizing the characteristics of the pump to alternately circulate liquid and gas, new effects of ultrasound and microbubbles are being realized. In nano-level applications, as a "flow-type ultrasonic system," efficient ultrasonic utilization has been achieved through "ultrasonic showers" that include frequency changes of over 300 megahertz.

  • pump
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0007kkk.jpg

Technology for using ultrasonic cleaners through sweep oscillation.

- Technology combining sweep oscillation with ultrasonic probes and ultrasonic cleaners -

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probe to ultrasonic cleaners. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, aimed at precision cleaning, processing, and stirring. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic model of ultrasound. The key point is to confirm the ultrasonic propagation characteristics of the target object, which is important for setting the oscillation conditions of the ultrasonic oscillation control probe as an optimization of the system's vibration modes related to sweep oscillation and pulse oscillation, serving as a control method for the original nonlinear resonance phenomenon.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9593.jpg

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

We will measure, analyze, and evaluate the propagation state of ultrasound using an ultrasonic tester.

Features (for standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 10 MHz * Ultrasonic oscillation Specification: 1 Hz to 100 kHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Attached software for time series data analysis This is a measurement system using an ultrasonic probe. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, detecting various acoustic performances. Ultrasonic Probe: Outline Specifications Measurement range: 0.01 Hz to 10 MHz Oscillation range: 1 kHz to 25 MHz Propagation range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7158.jpg

Acoustic property test using ultrasound (confirmation of suitability for ultrasonic cleaning)

Application of a new surface inspection technology using megahertz ultrasonic oscillation.

The Ultrasonic System Research Institute has developed a new surface inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of target objects. Using this technology, we will evaluate the ultrasonic propagation characteristics of the items to be cleaned and compile a report proposing effective control, frequency, and output levels for ultrasonic cleaning machines. This method applies measurement and analysis techniques for "sound pressure and vibration" by controlling the oscillation of the ultrasonic probe. By using an original ultrasonic probe tailored to the vibration modes propagating on the surface of the target object, we can confirm the propagation state of ultrasonic waves in narrow grooves and edge areas. Furthermore, through original oscillation control, we will measure and analyze the dynamic characteristics of low-frequency propagation properties and the generation state of harmonics due to nonlinearity. This is an application of the new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect the unique acoustic properties of the object.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230514b.jpg

Ultrasonic sound pressure measurement analysis device and oscillation control device.

A combination of "Ultrasonic Tester NA," which allows for easy measurement and analysis of ultrasound, and "Ultrasonic Oscillation System," which enables easy control of ultrasonic oscillation.

Ultrasonic "Sound Pressure Measurement Analysis Device (Ultrasonic Tester NA)" The Ultrasonic System Research Institute manufactures and sells the "Ultrasonic Tester NA (Standard Type)", which allows for easy measurement and analysis of ultrasonic waves. System Overview (Recommended System: Ultrasonic Tester NA) 1. Price 10 MHz Type: 198,000 yen (including tax: 10% consumption tax) 100 MHz Type: 264,000 yen (including tax: 10% consumption tax) 200 MHz Type: 297,000 yen (including tax: 10% consumption tax) 2. Contents One dedicated probe for measuring sound pressure of ultrasonic cleaners One general-purpose ultrasonic measurement probe One oscilloscope set One set of analysis software, instruction manual, and various installation sets (USB memory) 3. Features * Measurement (analysis) frequency range 10 MHz Type: from 0.1 Hz to 10 MHz 100 MHz Type: from 0.1 Hz to 100 MHz 200 MHz Type: from 0.1 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Measurement results displayed in graphs * Analysis software for time-series data included

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220412-0004_09011.png

Consulting on "plating treatment" using ultrasound and fine bubbles.

Ultrasonic plating treatment technology using fine bubbles and megahertz ultrasonic waves.

The Ultrasonic System Research Institute has been developing ultrasonic plating treatment technology utilizing fine bubbles and megahertz ultrasound in collaboration with Japan Barrel Industry Co., Ltd. since 2015. Note: As of August 2024, it is continuously evolving based on good results into various application technologies. 1) Cleaning, processing, welding, plating... surface treatment... 2) Chemical reactions, liquid homogenization, stirring... 3) Inspection, evaluation... 4) Optimization control of ultrasound and fine bubbles tailored to specific purposes. Currently, in collaboration with Japan Barrel Industry Co., Ltd., we are developing application technologies utilizing ultrasound and fine bubbles for iron plating treatment (iron powder, amorphous, megahertz ultrasound...). If you are interested, please contact us via email. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6802.jpg

Ultrasonic technology for homogenization and fluidity improvement of liquids (especially solvents).

- Application of nanolevel stirring, emulsification, dispersion, and grinding technology to control nonlinear ultrasonic phenomena (acoustic flow) -

- Technology for controlling nonlinear ultrasonic phenomena for nano-level stirring, emulsification, dispersion, and grinding - Ultrasonic Treatment 1: "Nanonization of Powders" Ultrasonic Treatment 2: "Homogenization of Liquids and Improvement of Fluidity" The Ultrasonic System Research Institute has developed a technology for "homogenizing liquids and improving fluidity using ultrasonic technology," utilizing the "technology for controlling nonlinear ultrasonic phenomena (acoustic flow)." This technology controls ultrasonic (cavitation and acoustic flow) by utilizing (evaluating) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic tanks, and other items through surface inspection. Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, in accordance with the interactions between glass containers, ultrasonic waves, and target objects, through the control of ultrasonic oscillation. In particular, the dynamic characteristics of harmonics achieved through acoustic flow control enable responses at the nano level. Ultrasonic Propagation Characteristics: 1) Vibration Modes (Self-Correlation) 2) Nonlinear Phenomena (Bicoherence) 3) Response Characteristics (Impulse Response) 4) Interactions (Power Contribution Rate)

  • pump
  • Water Treatment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20141021a.jpg

Ultrasonic control technology using indirect containers

Technology for controlling nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed a technology for controlling "nonlinear phenomena of ultrasound (acoustic flow)" using indirect containers. This technology utilizes (evaluates) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic water tanks, and other items to control ultrasound (cavitation and acoustic flow). Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nanoscale. This has been applied and developed from examples of dispersing metal powders to nanosize. By employing control technologies for standing waves and cavitation in relation to ultrasound, as well as propagation control technologies for indirect containers, we can appropriately control cavitation and acoustic flow. Through original measurement and analysis techniques for ultrasonic propagation states, we have confirmed the evaluation of acoustic flow and numerous know-how.

  • Analysis and prediction system
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Ultrasonic technology for liquid homogenization and flowability improvement.

- Technology for controlling nonlinear ultrasonic phenomena, enabling nano-level stirring, emulsification, dispersion, and grinding techniques.

Ultrasonic Treatment 1: "Nanopowdering" Ultrasonic Treatment 2: "Liquid Homogenization and Flowability Improvement" The Ultrasonic System Research Institute has developed a "technology for liquid homogenization and flowability improvement using ultrasonic control of nonlinear phenomena (acoustic flow)." This technology utilizes (evaluates) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic tanks, and other items through surface inspection to control ultrasonic (cavitation and acoustic flow). Furthermore, it achieves effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic properties of specific target objects, by controlling the ultrasonic oscillation in accordance with the interactions between glass containers, ultrasonic waves, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nanoscale. It has been applied and developed from the example of dispersing metal powders to nanosize.

  • pump
  • Water supply facilities
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9409.jpg

Consulting for Ultrasonic System Development Based on Sound Pressure Measurement Analysis 2

A technology has been developed to control the nonlinear phenomena of ultrasonic vibrations propagating to the target object based on classification techniques of ultrasonic waves and oscillation control.

We provide consulting services for the development of ultrasonic systems utilizing the following device. <<Deaeration Fine Bubble (Microbubble) Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble (microbubble) generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles (microbubbles), and when measuring the fine bubbles (microbubbles), the distribution of ultra-fine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Development technology for ultrasonic systems (consulting support)

Development of an original ultrasonic system utilizing surface elastic wave control technology based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed applied technologies that utilize surface acoustic waves through ultrasonic control. By combining ultrasound and surface acoustic waves, we achieve dynamic control of ultrasonic propagation. The key point is the ability to efficiently control nonlinear phenomena caused by surface acoustic waves. As specific technologies, we have developed system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks and tools, tailored to specific purposes (cleaning, stirring, stress relief, inspection, etc.). As a result of utilizing measurement and analysis techniques for ultrasonic propagation states, we have confirmed the realization of harmonic control and the ability to adjust nonlinear phenomena. Our know-how lies in confirming and responding to the acoustic characteristics of the system (measurement, analysis, evaluation).

  • Secondary steel products
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7378.jpg

Ultrasonic oscillation control technology that combines multiple sweep oscillations.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology method controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) of the dynamic characteristics (changes in nonlinear phenomena) related to the propagation state of the ultrasound. From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1: Two types of sweep oscillation control (linear type) 2: Three types of sweep oscillation control (nonlinear type) 3: Four types of sweep oscillation control (mixed type) 4: Dynamic control (variable type) based on the combinations above Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1: Linear variable control type 2: Nonlinear variable control type 3: Mixed variable control type (dynamic variable type)

  • pump
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasound oscillation system using original ultrasound probes.

An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). **Technology for Controlling Nonlinear Ultrasonic Vibration Phenomena** 1) Control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator, tailored to the acoustic characteristics of the target object. 2) Manufacturing technology for an ultrasonic oscillation control probe that enables control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for an ultrasonic measurement probe that allows for the measurement of changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasonic waves according to specific objectives. Note: The dynamic control of ultrasonic waves is performed based on the analysis and evaluation of sound pressure data related to nonlinear phenomena, considering the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control. (Sound pressure measurement, analysis, confirmation, and evaluation are conducted using an ultrasonic tester.)

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220712bss.jpg

Manufacturing technology for ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type)

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 500 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed through acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., and through oscillation control, we achieve propagation states tailored to specific purposes regarding acoustic pressure levels, frequencies, and dynamic characteristics. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220622-0028bi0001_29.png

Surface modification technology using surface elastic waves of ultrasonic probes.

- Surface modification technology (stress relaxation and uniformity) through nonlinear oscillation control of original ultrasonic probes -

The Ultrasonic System Research Institute has made it possible to control the nonlinear propagation state of ultrasound by utilizing measurement, analysis, and control technologies related to the propagation state of ultrasound as the acoustic characteristics of the target object. As a result, we have developed and advanced technology to efficiently alleviate residual stress on the surface of components. This technology for alleviating surface residual stress improves fatigue strength against metal fatigue and achieves uniformity in various surface treatments. In particular, by considering the guided waves (surface elastic waves) of the target object in the setting and control of the ultrasonic propagation state, we have developed control methods and tools that realize effective dynamic changes in the target object as stimuli that include nonlinear phenomena. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic characteristics, can be utilized and developed as a distinctive inherent operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(20)

Surface modification technology (stress relaxation) for ultrasonic beauty devices Ver2

Surface modification technology (stress relaxation) for ultrasonic beauty devices Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Stirring (Emulsification, Dispersion, Grinding) System (Operating Procedures) Ver2

Ultrasonic Stirring (Emulsification, Dispersion, Grinding) System (Operating Procedures) Ver2

MANUAL
  • E-book viewing
  • Catalog download

Contact this catalog

Measurement technology for various vibrations using ultrasound.

Measurement technology for various vibrations using ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

Ultrasonic Propagation State Measurement, Analysis, and Evaluation System Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaner's <sound pressure measurement, experimentation, analysis, evaluation> (onsite service available)

Ultrasonic cleaner's <sound pressure measurement, experimentation, analysis, evaluation> (onsite service available)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound, cleaning, stirring, modification, chemical reaction, system

Ultrasound, cleaning, stirring, modification, chemical reaction, system

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound, Microbubbles, and Surface Elastic Waves - Surface Treatment Technology -

Ultrasound, Microbubbles, and Surface Elastic Waves - Surface Treatment Technology -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology of ultrasonic systems based on sound pressure measurement analysis.

Development technology of ultrasonic systems based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation (Sweep Oscillation, Pulse Oscillation) System - Know-How 1 -

Ultrasonic Oscillation (Sweep Oscillation, Pulse Oscillation) System - Know-How 1 -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Experience Regarding Shannon's First Theorem - Original Technology Development -

Experience Regarding Shannon's First Theorem - Original Technology Development -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Acoustic flow control technology using a portable ultrasonic cleaner (nonlinear phenomenon) - Ver4

Acoustic flow control technology using a portable ultrasonic cleaner (nonlinear phenomenon) - Ver4

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Non-linear resonance type ultrasonic oscillation probe - Ver2

Non-linear resonance type ultrasonic oscillation probe - Ver2

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface modification technology using ultrasonic probes - Ver2

Surface modification technology using ultrasonic probes - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Consulting services for the manufacturing and evaluation technology of ultrasound probes.

Consulting services for the manufacturing and evaluation technology of ultrasound probes.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Regarding the response during the summer vacation period.

  • NEW
  • COMPANY

We sincerely apologize for the inconvenience, but we will be closed for summer vacation during the following period. Closure period: August 9 (Saturday) to August 17 (Sunday), 2025 Inquiries received during this period will be addressed sequentially starting from August 18 (Monday). We appreciate your understanding and cooperation.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition Thank You for Attending

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition." Thanks to you, we had many visitors and were able to conclude the event successfully. In addition to the "PPLB-445" displayed on the day, we have a variety of products available. For those who were unable to measure samples at the venue, we offer a trial measurement service. Furthermore, for those who would like to know more about our products and services, we also accept online meetings. We welcome inquiries from those who attended as well as those who could not make it this time due to scheduling conflicts. Please feel free to contact us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【New Product Information】Wireless display "NW2991-JP" with long battery life and low power consumption released.

  • NEW
  • PRODUCT

Aioi System is pleased to announce the release of the low-power wireless display "NW2991-JP," which achieves long battery life. This product supports 920MHz band wireless communication and can be operated in conjunction with wired displays. It can be easily integrated into existing systems by simply adding a master unit. With a high-speed response time of under one second and a variety of display functions for text and barcodes, it supports a wide range of applications. ▼ For more details, please see the press release linked below ▼ ■ Main Features - Maintenance-free design with a battery life of one year (low power consumption) - Compatible with mixed operation with wired displays - High-speed response (under one second) and diverse display formats - Stable communication in the 920MHz band ■ You can see the actual product at the exhibition This product will be displayed at the TOPPAN booth during the International Logistics Comprehensive Exhibition 2025, 4th INNOVATION EXPO. We invite you to visit the venue, see the actual product, and experience its performance. Dates: September 10 (Wed) - 12 (Fri), 2025 Venue: Tokyo Big Sight (Halls 4-8) Booth No: 5-907 (TOPPAN booth) Exhibition official website ▶ linked below We sincerely look forward to your visit.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Measurement of cosmetics

Thank you for visiting the Monozukuri World (Measurement, Inspection, and Sensor Exhibition).

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "Monozukuri World (Measurement, Inspection, and Sensor Exhibition) 2025." Thanks to you, we had many visitors, and the event concluded successfully. In addition to the "PPLB-445" showcased on the day, we have a variety of products available. For those who were unable to conduct sample measurements at the venue, we offer a trial measurement service. Furthermore, for those who would like to learn more about our products and services, we also accept online meetings. We welcome inquiries from those who attended, as well as those who were unable to come this time due to scheduling conflicts. Please feel free to reach out to us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.