iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35453items
    • Facilities
      Facilities
      56016items
    • Lighting and Interior
      Lighting and Interior
      17208items
    • Common materials
      Common materials
      36604items
    • Civil Engineering Materials
      Civil Engineering Materials
      9531items
    • Construction, work and methods
      Construction, work and methods
      27337items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29232items
    • IT/Software
      IT/Software
      32641items
    • others
      others
      76471items
    • Store and facility supplies
      Store and facility supplies
      4367items
    • Office and commercial supplies
      Office and commercial supplies
      11362items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      956items
    • Logistics Equipment
      Logistics Equipment
      6759items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7215
    • others
      7020
    • Building materials, supplies and fixtures manufacturers
      6662
    • Service Industry
      4641
    • Trading company/Wholesale
      3002
    • Other construction industries
      2453
    • Electrical equipment construction business
      642
    • Interior Design
      526
    • Facility Design Office
      490
    • Construction Consultant
      465
    • Architectural design office
      361
    • retail
      346
    • Warehousing and transport related industries
      322
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      286
    • Interior construction business
      276
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      252
    • Renovation and home construction industry
      223
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      161
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      37
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Publication of relaxation technology for surface residual stress of ultrasonic transducers.
PRODUCT
  • Sep 05, 2022
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Sep 05, 2022

Publication of relaxation technology for surface residual stress of ultrasonic transducers.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has released a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to alleviate the surface residual stress of ultrasonic transducers using an ultrasonic and microbubble generation liquid circulation system. This technology for alleviating surface residual stress enables improvements in fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to realize effective ultrasonic irradiation conditions through settings, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (analysis confirmation of sound pressure data) - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator - Measurement Equipment: Example - Oscilloscope
Ultrasonic control
Ultrasonic control
Ultrasonic control technology
Ultrasonic control technology
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

超音波振動子の表面残留応力緩和技術-Ver3.pdf[3415474]

Related Links

Surface treatment technology using fine bubbles and ultrasound
Surface treatment technology using fine bubbles and ultrasound
Surface modification (stress relaxation) technology using ultrasound and microbubbles
Surface modification (stress relaxation) technology using ultrasound and microbubbles
Surface modification treatment using megahertz ultrasound
Surface modification treatment using megahertz ultrasound

Related product

20191129-0001ss.jpg

Surface treatment technology using fine bubbles and ultrasound.

Relaxation and uniform treatment of surface residual stress using ultra-fine bubbles and megahertz acoustic flow control.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the size of the bubbles formed by cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Turbid water and muddy water treatment machines
  • Other measuring instruments
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9323.jpg

Improvement technology for ultrasonic cleaning machines (consulting support)

Proposal for a cleaning method optimized with fine bubbles and megahertz ultrasonic waves.

The Ultrasonic System Research Institute conducts improvements to ultrasonic cleaning machines (consulting available) using original products: ultrasonic systems (sound pressure measurement analysis, oscillation control). For the current ultrasonic cleaning machines, we propose and implement improvement methods based on sound pressure measurement and analysis. Specifically, we will discuss the level of improvement through measurement and verification of ultrasonic cleaning machines using our original product: Ultrasonic Tester NA (recommended type), which allows for easy measurement and analysis of ultrasonic waves. Depending on the level of improvement, we will suggest the use of our original product: Ultrasonic Oscillation System (1 MHz, 20 MHz), which allows for easy control of ultrasonic oscillation. Based on the conditions of the water tank, cleaning solution, items to be cleaned, and cleaning level, we will propose a degassing fine bubble generation liquid circulation device. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3690.jpg

Dynamic liquid circulation system for ultrasonic cleaning machines (consulting available)

Optimization technology for ultrasonic cleaning machines

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines, which propagate through the liquid, to set and control the state of ultrasonic cleaning machines according to specific purposes, taking into account the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific objectives through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology that considers "timbre." Note 2: The know-how involves settings related to the relationships between the cleaning machine, cleaning solution, and air at their respective boundaries. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has been made possible through degassing, aeration, ultrasound, and elastic wave dynamics on the tank surface.

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230514b.jpg

Ultrasonic sound pressure measurement analysis device and oscillation control device.

A combination of "Ultrasonic Tester NA," which allows for easy measurement and analysis of ultrasound, and "Ultrasonic Oscillation System," which enables easy control of ultrasonic oscillation.

Ultrasonic "Sound Pressure Measurement Analysis Device (Ultrasonic Tester NA)" The Ultrasonic System Research Institute manufactures and sells the "Ultrasonic Tester NA (Standard Type)", which allows for easy measurement and analysis of ultrasonic waves. System Overview (Recommended System: Ultrasonic Tester NA) 1. Price 10 MHz Type: 198,000 yen (including tax: 10% consumption tax) 100 MHz Type: 264,000 yen (including tax: 10% consumption tax) 200 MHz Type: 297,000 yen (including tax: 10% consumption tax) 2. Contents One dedicated probe for measuring sound pressure of ultrasonic cleaners One general-purpose ultrasonic measurement probe One oscilloscope set One set of analysis software, instruction manual, and various installation sets (USB memory) 3. Features * Measurement (analysis) frequency range 10 MHz Type: from 0.1 Hz to 10 MHz 100 MHz Type: from 0.1 Hz to 100 MHz 200 MHz Type: from 0.1 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Measurement results displayed in graphs * Analysis software for time-series data included

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20150823w.jpg

Improvement of the ultrasonic cleaning machine (Field support for the addition of fine bubble generation system)

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound.

The Ultrasonic System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable manner, we offer on-site services to add and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. **Explanation of Degassing Fine Bubble Generation Liquid Circulation Technology** By ensuring appropriate liquid circulation and the diffusibility of fine bubbles, a uniform state of cleaning liquid is achieved. Ultrasound propagates through the uniform liquid, generating a stable state of ultrasound. From this state, liquid circulation control is performed to realize the desired ultrasonic effects (propagation state). This involves achieving a uniform sound pressure distribution throughout the tank, optimizing ultrasound, liquid circulation pumps, fine bubbles, etc. The operational control becomes the know-how for individual tanks.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9408.jpg

Surface residual stress relaxation and uniformization technology for ultrasonic transducers.

A technology for alleviating and equalizing the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system.

The Ultrasonic System Research Institute has published a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to relax the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system. This technology for relaxing surface residual stress enables the improvement of fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to achieve effective ultrasonic irradiation conditions through the setting, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology will be offered as a consulting service. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic properties, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Special Construction Method
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic cleaning machine utilizing nonlinear phenomena from ultrasound and fine bubbles.

Optimization of cavitation and acoustic flow using a degassed fine bubble generation liquid circulation device.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing microbubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: Two types of ultrasonic transducers (standard types 38 kHz, 72 kHz) that perform surface modification treatment using ultrasonic waves and microbubbles. 2: An ultrasonic dedicated tank (standard type, inner dimensions: 500*310*340mm) that performs surface modification treatment using ultrasonic waves and microbubbles. 3: A degassing and microbubble generation liquid circulation system. 4: An optimization control system for ultrasonic output and liquid circulation via a control device. 5: An acoustic pressure management system using an ultrasonic tester. *Features This is an effective device utilizing an ultrasonic dedicated tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank are insufficient. Depending on the target and purpose of cleaning, stirring, and surface modification, two types of ultrasonic transducers are combined and controlled. The recommended combination is in the state of 38 kHz and 72 kHz. Technology for stably utilizing fine bubbles of 20 μm or less.

  • pump
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7528.jpg

Cleaning technology using ultrasound and fine bubbles (microbubbles)

Ultrasonic cleaning technology based on the measurement, analysis, and evaluation of ultrasonic propagation conditions.

The Ultrasonic System Research Institute has developed technology that applies "measurement, analysis, and control" techniques related to the nonlinearity of ultrasound to analyze and evaluate the dynamic characteristics of ultrasonic vibrations propagating through various targets (elastic bodies, liquids, gases). This technology optimizes interactions concerning cleaning objects, tools, ultrasonic transducers, water tanks, and liquid circulation according to specific purposes. Through previous oscillation, measurement, and analysis using ultrasonic oscillation control probes and ultrasonic testers, we have developed optimization technology for ultrasonic utilization by examining various relationships and response characteristics (Note: power contribution rate, impulse response, etc.). Regarding the measurement and analysis of ultrasound, the setting of sampling time utilizes original simulation technology. This technology is provided as consulting for the optimization of ultrasonic systems (cleaning, stirring, processing, etc.). The propagation characteristics of ultrasound include: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rate)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
eeIMG_8566ss.jpg

Technology that utilizes (optimizes) multiple different frequency "ultrasonic transducers."

Based on sound pressure measurement analysis, ultrasonic optimization technology allows for the efficient and stable use of ultrasound tailored to specific purposes.

The Ultrasonic System Research Institute has developed a technology that utilizes "ultrasonic transducers" of multiple different frequencies. This technology, in addition to standing wave control technology, adjusts the output of each ultrasonic transducer to vary the nonlinear effects of cavitation and acceleration according to specific purposes. By using ultrasonic transducers with a frequency of 40 kHz and an output of 50-600 W, it is possible to disperse a 1-millimeter diameter metal tube into a 1-micron state, as well as to clean it without causing damage. Through original measurement and analysis technology for ultrasonic propagation states, we are confirming various ultrasonic utilization technologies tailored to the unique characteristics of the transducers. This is a new ultrasonic technology that, including the general effects of ultrasonic dynamic characteristics, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, chemical reaction experiments, and more. Ultrasonic propagation characteristics: 1) Vibration modes (changes in self-correlation) 2) Nonlinear phenomena (changes in bispectrum) 3) Response characteristics (analysis of impulse response) 4) Interactions (analysis of power contribution rates)

  • pump

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0600a.jpg

A technology for alleviating surface residual stress through the control of megahertz ultrasonic oscillation.

Surface treatment technology using a megahertz ultrasonic oscillation control probe -- Improvement treatment of metal fatigue strength (relaxation and uniformization of surface residual stress) --

The Ultrasonic System Research Institute has developed methods for measuring, analyzing, and evaluating surface residual stress by applying the following technologies: 1) Manufacturing technology for ultrasonic probes 2) Evaluation technology for ultrasonic propagation conditions 3) Surface inspection technology using ultrasound Based on numerous achievements, we believe that various applications are possible as ultrasonic utilization technology, and we are making related technologies publicly available. Specific examples: Surface treatment know-how: Standard settings Output: 13-15V Rectangular wave: Duty 47.1% Sweep range: 500kHz - 13MHz, 2 seconds Settings for low-intensity targets (or long processing times): Output: 1-3V Rectangular wave: Duty 47.1% Sweep range: 300kHz - 3MHz, 1 second (or 100kHz - 5MHz, 1 second) Note: The oscillation conditions can vary significantly due to the ultrasonic propagation characteristics of the target object and the oscillation characteristics of the function generator. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220622-0028bi0001_29.png

Surface modification technology using surface elastic waves of ultrasonic probes.

- Surface modification technology (stress relaxation and uniformity) through nonlinear oscillation control of original ultrasonic probes -

The Ultrasonic System Research Institute has made it possible to control the nonlinear propagation state of ultrasound by utilizing measurement, analysis, and control technologies related to the propagation state of ultrasound as the acoustic characteristics of the target object. As a result, we have developed and advanced technology to efficiently alleviate residual stress on the surface of components. This technology for alleviating surface residual stress improves fatigue strength against metal fatigue and achieves uniformity in various surface treatments. In particular, by considering the guided waves (surface elastic waves) of the target object in the setting and control of the ultrasonic propagation state, we have developed control methods and tools that realize effective dynamic changes in the target object as stimuli that include nonlinear phenomena. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic characteristics, can be utilized and developed as a distinctive inherent operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(14)

Vibrator installation know-how (control of standing waves)

Vibrator installation know-how (control of standing waves)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Design and manufacturing technology for ultrasonic dedicated tanks.

Design and manufacturing technology for ultrasonic dedicated tanks.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface modification technology using dynamic control of ultrasound and fine bubbles.

Surface modification technology using dynamic control of ultrasound and fine bubbles.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Utilization of ultrasound and fine bubbles in plating processes.

Utilization of ultrasound and fine bubbles in plating processes.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Megahertz ultrasonic oscillation control probe (patent document)

Megahertz ultrasonic oscillation control probe (patent document)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Function generator oscillation of ultrasonic transducer (megahertz sweep oscillation technology) - Ver5

Function generator oscillation of ultrasonic transducer (megahertz sweep oscillation technology) - Ver5

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic Control Technology of Megahertz Ultrasonic - Ver2

Dynamic Control Technology of Megahertz Ultrasonic - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear control technology for ultrasound - Key factor in ultrasonic cleaning: Technology to optimize acoustic flow.

Nonlinear control technology for ultrasound - Key factor in ultrasonic cleaning: Technology to optimize acoustic flow.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.

Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble generation liquid circulation device - Technology for uniformity of cleaning solution and acoustic flow control -

Deaeration fine bubble generation liquid circulation device - Technology for uniformity of cleaning solution and acoustic flow control -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound and surface elastic waves (development technology for an original ultrasonic system that propagates along the surface of objects)

Ultrasound and surface elastic waves (development technology for an original ultrasonic system that propagates along the surface of objects)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development and manufacturing technology for new ultrasonic propagation tools utilizing plating technology (Nihon Barrel Industry Co., Ltd.) - Ver2

Development and manufacturing technology for new ultrasonic propagation tools utilizing plating technology (Nihon Barrel Industry Co., Ltd.) - Ver2

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

The essence of ultrasonic cleaning (acoustic flow as a nonlinear phenomenon)

The essence of ultrasonic cleaning (acoustic flow as a nonlinear phenomenon)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

[Please introduce this to the management and general affairs department] Update on the expense reimbursement system implementation case! The input and verification work for FB data that used to take 2-3 hours is now completed in just 5 minutes!

  • NEW
  • OTHER

An article has been published about the case of introducing the expense reimbursement system "Rakuraku Seisan" at TSP Corporation. ~ In the case of TSP ~ Before the introduction, there were challenges such as dealing with the "paper" sent from various locations and the reliance on specific individuals for the tasks. After the introduction, the input and checking of FB data, which used to take 2 to 3 hours, can now be completed in just 5 minutes. Additionally, the mindset of the accounting department, which was previously reliant on manual entry, has changed. [Case Overview] ■ Challenges before introduction - Dealing with "paper" sent from various locations, reliance on specific individuals ■ Key points of introduction - A robust support system for setup and operation - Easy to start from a small scale both financially and functionally *For more details, please refer to the related links or feel free to contact us.

Sep 26, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【Wandering Prevention】 "Nurse Call Linked Wireless Series" Prevents tripping and disconnection caused by cords!

  • NEW
  • PRODUCT

The facility operating the nurse call system has made the bed exit sensor wireless, allowing it to notify in conjunction with the nurse call. By simply connecting the mat sensor "Foldable Thin Matt-kun," the body movement call "Ugo-kun," and the wheelchair body movement call "Ayumi-chan" to the transmitter HB-RS, you can make the bed exit sensor wireless. The infrared sensor "Just Place Pole-kun" has the transmitter HB-RS built-in. 【Features】 ○ Wireless conversion by simply connecting existing sensors to the transmitter HB-WSK. ○ The bed exit sensor notifies wirelessly in conjunction with the nurse call. ○ Up to 5 transmitters can be registered with one receiver. ○ The communication distance between the transmitter and receiver is approximately 10 meters. ◎ For more details, please contact us or download the catalog.

Sep 26, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Full and Empty Management (Medium to Large Scale)

Parking lot occupancy management vehicle detection sensor | Hotron Co., Ltd.

  • NEW
  • PRODUCT

Full and empty management refers to the real-time display of parking availability and the management of efficient use of parking spaces. By utilizing Hotron's sensors, drivers can quickly discover available parking spaces, achieving efficient parking lot operations. ■ For large parking lots, the "floor management method" and "block management method," which focus on cost reduction, are recommended. Sensors are installed at regular intervals to count the number of vehicles passing through. This method offers the advantage of easy installation and low costs. 【Target Products】 - Vehicle Count Sensor CCS2 - Ultrasonic Sensor HM-UX2/UW2 ■ For smaller scale operations, the "space management method," which installs sensors in each parking space to display availability with high accuracy, is recommended. By ensuring accurate full and empty displays, it helps prevent unnecessary entry of new vehicles and enables safe parking lot operations. 【Target Products】 - Occupancy Detection Sensor HM-UX2/UW2 - Occupancy/Pass Detection Sensor HM-LC6 - Occupancy Detection Sensor HM-LC7/LC7-FLS - Occupancy/Pass Detection Sensor HM-S6 - Occupancy Detection Sensor HM-S8

Sep 26, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Non-contact light touch sensor "HA-T401/HA-T520"

A non-contact light touch sensor "HA-T Series" that realizes "wanting to open in a narrower range and in a limited manner" based on the surrounding environment of automatic doors.

  • NEW
  • PRODUCT

The non-contact beam touch sensor "HA-T401/HA-T520" has a compact detection range, making it an ideal automatic door sensor for installation on automatic doors facing narrow corridors or busy streets. Depending on the application and installation location, you can choose between "non-vision mounting type" and "non-vision built-in type." 【Features】 ● With the beam touch sensor, you can open and close the automatic door simply by bringing your hand close without touching it, ensuring hygiene. ● Depending on the installation environment, such as single sliding or bi-parting doors, the detection range can be set in four configurations: left, center, right, and a total of 12 spots. ● Two types of activation row settings are available to reduce unnecessary opening and closing of the automatic door due to cross traffic, contributing to energy-saving effects. ● The touch switch and infrared sensor are integrated, allowing for a switch between beam touch and infrared sensor with a single model. 【Recommended for such locations!】 ☑ Entrance facing a busy corridor ☑ Counter or sign near the door ☑ Buildings facing narrow corridors ☑ Buildings that prioritize aesthetics ☑ Hospitals and facilities that consider hygiene ☑ Large facilities with many doors ◎ For more details, please download the materials or contact us.

Sep 25, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Sep 25, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
  • 手書きの書類が、そのままSalesforceの資産に AIインターフェース AskOne ホワイトペーパー無料ダウンロード
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.