Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.
<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the bubble size of the dissolved gas due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz (1-20 MHz) ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.
Inquire About This Product
basic information
<<Consulting Services>> Utilizing ultrasound and microbubbles, we provide consulting services on surface treatment (acoustic flow control) covering the following aspects: 1: Explanation of principles 2: Description of specific equipment (design and manufacturing if necessary) 3: Explanation of operation methods and work know-how 4: Explanation of new ultrasound utilization technologies Achievements and Case Studies: 1: Surface modification of ultrasonic tanks 2: Surface modification of ultrasonic transducers 3: Ultrasonic plating treatment 4: Ultrasonic processing and welding... If you are interested, please contact us via email. Ultrasound Propagation Characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: Autocorrelation analysis function bispec: Bispectrum analysis function mulmar: Impulse response analysis function mulnos: Power contribution rate analysis function
Price information
Please feel free to contact us.
Delivery Time
※Please feel free to contact us.
Applications/Examples of results
2008. 8 Established the Ultrasonic System Research Institute ... 2012. 1 Started manufacturing and selling ultrasonic measurement and analysis systems (Ultrasonic Tester NA) ... 2024. 2 Developed surface treatment technology using megahertz ultrasound 2024. 4 Developed optimization technology for resonance phenomena and nonlinear phenomena 2024. 5 Developed optimization technology related to the combination of sound and ultrasound 2024. 6 Developed optimization and evaluation technology concerning water tanks, ultrasound, and liquid circulation 2024. 7 Developed an ultrasonic probe using components with iron plating on polyimide film 2024. 8 Developed a "megahertz ultrasound control" method applying Shannon's juggling theorem 2024. 9 Developed acoustic flow control technology using a portable ultrasonic cleaner 2024. 10 Developed "vibration technology" utilizing megahertz ultrasound 2024. 10 Developed an ultrasonic oscillation control probe using a stainless steel vacuum double-structure container 2024. 11 Developed megahertz flow-type ultrasound (underwater shower) technology 2024. 11 Developed ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics
Detailed information
-
Ultrasound and fine bubbles (microbubbles)
-
Metal plating treatment: Japan Barrel Industry Co., Ltd.
-
Ultrasonic and fine bubble (microbubble) shower
-
Ultrasonic stirring
-
Ultrasonic plating
-
Ultrasonic cleaning
-
Surface modification
-
Ultrasonic plating
-
Surface treatment
catalog(36)
Download All Catalogs



















News about this product(67)
Company information
The Ultrasonic System Research Institute conducts the following activities with its original product: ultrasonic systems (sound pressure measurement analysis, oscillation control): 1) Manufacturing and sales of ultrasonic systems (sound pressure measurement analysis, oscillation control) 2) Consulting services for various equipment (Note): cleaning machines, stirring devices, processing equipment, machine tools, plating devices, welding devices, etc. Ultrasonic System (Sound Pressure Measurement Analysis, Oscillation Control) We manufacture and sell a system that combines the "Ultrasonic Tester NA (recommended type)" for easy measurement and analysis of ultrasonic waves and the "Ultrasonic Oscillation System (1 MHz, 20 MHz)" for easy oscillation control. <Patent Applications Filed> Patent Application No. 2021-125866: Ultrasonic Control (Ultrasonic Oscillation Control Probe) Patent Application No. 2021-159990: Ultrasonic Welding Patent Application No. 2021-161532: Ultrasonic Plating Patent Application No. 2021-171909: Ultrasonic Processing Patent Application No. 2021-175568: Flow-type Ultrasonic Cleaning Some of the manufacturing technology for the ultrasonic oscillation control probe is described in Patent Application No. 2021-125866. Patent Application No. 2023-195514: Ultrasonic Plating Using Megahertz Ultrasonic Waves and Fine Bubbles.