List of Surveys, Measurements, and Services products
- classification:Surveys, Measurements, and Services
3106~3150 item / All 29199 items
Introducing examples of handrail production that ensures safety with appropriate costs and short delivery times!
- handrail
Clear visibility with transparent glass! Recommended for store and building entrances.
- Disaster prevention fittings
- Entrance/Exterior Doors
■ Cloud service for automating water-related operations ■
- maintenance
The recycling motor dismantling machine cuts the motor and stator and separates copper from the iron and aluminum cover; this is a recycling machine for motor copper separation.
- Other analytical equipment
This is a non-contact torque measuring device developed by the advanced German company Manner, which has numerous proven applications.
- Other measuring instruments
Magnetic switch (sensor) with stable operation in environments of -40℃, IP68.
- Other measuring instruments
It is a built-in sensor power supply integrated total and instantaneous flow display. It operates on an AC-free power supply and is compatible with pulse output flow sensors.
- Other measuring instruments
The LED light source is pulse-modulated, allowing for measurements even in direct sunlight! It is a compact and lightweight type that is easy to maintain.
- Other measuring instruments
We have developed a completely new "vibration measurement technology" using our original product (ultrasonic tester).
- Other measuring instruments
- others
Ultrasonic oscillation control probe using a stainless steel vacuum double-walled container.
Technology for Manufacturing Ultrasonic Oscillation Control Probes in Megahertz -- Consulting Support for Manufacturing Know-How -- The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states above 900 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (verification of sound pressure data analysis) - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, and glass, we achieve propagation states tailored to specific purposes regarding sound pressure levels, frequency, and dynamic characteristics through oscillation control.
An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.
- Analysis and prediction system
- Other measuring instruments
- others
Original Ultrasonic Probe ver2 - Application of Surface Residual Stress Relaxation and Uniformity Treatment Technology through Nonlinear Oscillation Control of Ultrasound -
The Ultrasonic System Research Institute has developed a new "Ultrasonic <Oscillation/Control> System" utilizing the "oscillation/control" technology of its original product: ultrasonic probes, for applications such as component inspection, precision cleaning, nano-dispersion, and chemical reaction experiments. This is an application technology using original ultrasonic probes tailored to specific purposes. By measuring, analyzing, and evaluating ultrasonic sound pressure data, this system enables effective oscillation and control of ultrasonic waves. In particular, by combining multiple oscillation and control methods, it can control ultrasonic stimulation for high sound pressure levels and high frequencies due to nonlinear phenomena. It proposes new utilization methods of ultrasonic vibrations for inspecting the connection state and surface of components, as well as for precision cleaning and surface treatment of very small parts. The ultrasonic probes are "custom-made" based on the confirmed usage purposes. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (analysis confirmation of sound pressure data)
It can be used even in places with significant water surface fluctuations! It is also suitable for detecting leaks of water and oil on the floor.
- Other measuring instruments
Snow removal machines, construction machinery, etc. operation records and management.
- Other measuring instruments
An electromagnetic flowmeter that pursues lightweight and simplicity. Auto-zero function. Both the main unit and the detection unit weigh less than 500g.
- Other measuring instruments
Smartphone Soil pH Wireless Sensor / Model Number M1172WS-1871K
- Other measuring instruments
Measurement of nitrate and nitrite ions dissolved in water using ultraviolet-visible spectrophotometry.
- Water quality/pH measuring device
Development of "Control Technology for Nonlinear Phenomena" Using a Small Pump
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- Non-destructive testing
Technical documentation on the use of fine bubbles (microbubbles) in ultrasonic applications - Deaeration fine bubble generation liquid circulation device.
Technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls acoustic flow of ultrasound— 1-1. Basics of Ultrasound 1-2. Propagation Phenomena of Ultrasonic Vibration 1-3. Fine Bubbles (Microbubbles) *Properties of Microbubbles* 1) Bubbles of about 10μm rise slowly over approximately 3 hours to a height of 1m. 2) The generated bubbles exist independently without coalescing, resulting in excellent dispersion. 3) They have the property of slowly rising in water and adsorbing tiny debris to bring it to the surface. ... 13) The negative potential depends on the pH of the water. 14) Microbubbles have excellent scattering characteristics for ultrasound. 15) Microbubbles collapse as a resonance phenomenon when exposed to ultrasonic irradiation. These properties are expected to be further elucidated in the future, but currently contain many unknown aspects. Propagation Characteristics of Ultrasound 1) Detection of Vibration Modes (Changes in Self-Correlation) 2) Detection of Nonlinear Phenomena (Changes in Bicoherence) 3) Detection of Response Characteristics (Analysis of Impulse Response) 4) Detection of Interactions (Analysis of Power Contribution Rate)
[Joint Research with Tokyo Denki University] Measuring airtightness and ventilation airflow of detached and multi-family houses with a single device.
- Anemometer
Application technologies of <control, measurement, analysis, evaluation> using ultrasonic testers.
- Non-destructive testing
- Other measuring instruments
- others
Ultrasound, Fine Bubbles, and Surface Elastic Waves - Surface Treatment Technology -
The Ultrasonic System Research Institute has developed (and published) technology to control the propagation phenomena of megahertz ultrasonic waves using ultrasound and fine bubbles/microbubbles and surface elastic waves. By optimizing the acoustic properties of surface elastic waves (in resin, steel, stainless steel, glass, ceramics, etc.) for the technology that alleviates surface residual stress using ultrasound and fine bubbles/microbubbles, we have developed methods for utilizing ultrasound tailored to specific purposes. In particular, there has been an increase in achievements related to ultrasonic cleaning, plating treatment, and the homogenization effect of liquids. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment Example: Function Generator Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.
- Other measuring instruments
- Water Treatment
- others
Technical documentation on the use of fine bubbles (microbubbles) in ultrasonic applications - Deaeration fine bubble generation liquid circulation device.
Technology for stably utilizing fine bubbles with a spherical size of 20μm or less—nano-level cleaning method that controls acoustic flow of ultrasound— 1-1. Basics of Ultrasound 1-2. Propagation Phenomena of Ultrasonic Vibration 1-3. Fine Bubbles (Microbubbles) *Properties of Microbubbles* 1) Bubbles of about 10μm rise slowly over approximately 3 hours to a height of 1m. 2) The generated bubbles exist independently without coalescing, resulting in excellent dispersion. 3) They have the property of slowly rising in water and adsorbing tiny debris to bring it to the surface. ... 13) The negative potential depends on the pH of the water. 14) Microbubbles have excellent scattering characteristics for ultrasound. 15) Microbubbles collapse as a resonance phenomenon when exposed to ultrasonic irradiation. These properties are expected to be further elucidated in the future, but currently contain many unknown aspects. Propagation Characteristics of Ultrasound 1) Detection of Vibration Modes (Changes in Self-Correlation) 2) Detection of Nonlinear Phenomena (Changes in Bicoherence) 3) Detection of Response Characteristics (Analysis of Impulse Response) 4) Detection of Interactions (Analysis of Power Contribution Rate)
Outsourcing of equipment has become possible, allowing customers to concentrate their management resources on their core business.
- Power and Energy Equipment
- Facility Design
- maintenance
This is waterproof sandpaper for sample grinding machines. We offer reliable JIS standard products at low prices. Please compare.
- Geological Survey
- Geological Survey Company
A domestically produced centimeter-level GPS antenna module used in the measurement industry!
- Other measuring instruments
Overseas products are very expensive! There has been a demand for reasonably priced domestic products.
- Other measuring instruments
A hybrid vacuum cleaner for floors that can clean simultaneously. From now on, it can handle a wide range of floor materials and dirt with just one device. Reduces floor cleaning time and effort by ha...
- cleaning
This is a lightweight cordless Kärcher commercial simple cleaner. It can be used for about 50 minutes on a single charge. The brush sweeps up dirt, and there is no exhaust.
- cleaning
A fixed-rate low-cost mobile communication service ideal for corporate use.
- Construction machinery leasing and rental
- Other Management Services
- Sales promotion and sales support software
We cater to a wide range of customers, including tourism operators, small and medium-sized enterprises, and sole proprietors!
- Consulting companies
A compact unit designed for labor-saving through one-man surveying.
- Other measuring instruments
Quantifying heat! Handheld heat index meter
- Other measuring instruments
It overturns the common knowledge of solution component analysis.
- Other analytical equipment
You can start a new business with ideas and CreatorVenture.
- Drawing, tracing, CAD
We provide manufacturing technology and data analysis evaluation technology.
- others
- Non-destructive testing
- Other analytical equipment
"Experiences Regarding Shannon's First Theorem" - Original Technology Development -
* "Shannon's First Theorem" The relationship between information and entropy (as information increases, entropy decreases) Entropy: The average amount of information per symbol from a memoryless information source ... "Experiences Related to Shannon's First Theorem" — Original Technology Development — 1) Theme "Shannon's First Theorem is practically useful based on experience" 1-1) Useful for creating models related to the consideration of basic systems (Note 1) 1-2) Useful as foundational knowledge regarding data and noise (While it may be difficult to understand its necessity in routine development tasks, when considered from the perspective of high originality in research and development of new products, it is very effective as a research viewpoint (Note 2)) Note 1: Example - Consistency and systematization of objects related to system development (e.g., algorithms) Note 2: Example - Cause analysis of machine vibrations, electrical noise, program bugs, and defects...
Surface inspection technology utilizing ultrasonic transmission and reception characteristics.
- Other measuring instruments
- Non-destructive testing
- others
Ultrasonic Oscillation System USP 20MHz Specification Document
Ultrasonic Oscillation System (20MHz Type) USP-2021-20MHz B-1 KKmoon Signal Generator 1 set Function Generator 200MSa/s 25MHz B-2 Original Initial Settings for KKmoon Signal Generator Simple Operation Manual B-3 Ultrasonic Oscillation Control Probes 2 pieces Ultrasonic Probe: Overview Specifications Measurement Range 0.01Hz to 200MHz Oscillation Range 0.5kHz to 25MHz Propagation Range 0.5kHz to over 900MHz (confirmed evaluation through analysis) Material Stainless Steel, LCP Resin, Silicon, Teflon, Glass... Oscillation Equipment Example Function Generator Recommended Settings Example ch1 Square Wave 47.1% (duty) 8.0MHz Output 13.4V ch2 Square Wave 43.7% (duty) 11.0MHz Output 13.7V Sweep Oscillation Conditions Square Wave 3MHz to 18MHz, 2 seconds Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Self-Correlation) 2) Detection of Nonlinear Phenomena (Changes in Bicoherence) 3) Detection of Response Characteristics 4) Detection of Interactions
Acoustic property test using ultrasound
- Other measuring instruments
- Non-destructive testing
- others
Development technology of ultrasonic systems based on sound pressure measurement analysis.
The Ultrasonic System Research Institute has developed analysis, design, and manufacturing technologies for ultrasonic <cleaning, stirring, etc.> systems based on measurement, analysis, and evaluation of ultrasonic propagation conditions. 1: Measurement and analysis of the acoustic characteristics of ultrasonic equipment and target objects (cleaning items, etc.) 2: Design and adjustment of tanks and transducers based on acoustic characteristics (selection of multiple different frequency ultrasonic transducers as needed, or adoption of megahertz ultrasonic oscillation control probes, etc.) 3: Optimization of ultrasonic oscillation control conditions for target objects 4: Design, manufacturing, and development of liquid circulation systems containing fine bubbles, tailored to ultrasonic control 5: Design of tanks and jigs based on the above sound pressure measurement analysis (optimization of nonlinear phenomena according to purpose) 6: Manufacturing utilizing fine bubbles and ultrasound (aging treatment and surface residual stress relaxation treatment of tanks, transducers, jigs, etc. using fine bubbles and ultrasound) 7: Confirmation of ultrasonic propagation characteristics of ultrasonic transducers, tanks, and jigs using an ultrasonic tester (sound pressure measurement and analysis system) 7-1: Verification of ultrasonic propagation characteristics of ultrasonic transducers, tanks, and jigs 7-2: Optimization of ultrasonic control/output, liquid circulation control, and cavitation, etc.
"Ultrasonic system" technology that enables control of ultrasonic propagation conditions in the 1-900 MHz range.
- Scientific Calculation and Simulation Software
- Other measuring instruments
- others
Ultrasonic cleaning machine liquid circulation technology: The flow and shape of acoustic streams and the constructal law - Control technology for nonlinear phenomena -
The Ultrasonic System Research Institute has developed ultrasonic utilization technology (nonlinear phenomena: control of acoustic flow) using the "Constructal Law" related to flow and shape, inspired by the observation of flow. Regarding ultrasonic utilization, we believe that through our experience in observing flow, we can intuitively grasp acoustic flow (the nonlinear phenomenon of ultrasound). Acoustic flow <General Concept> When a finite amplitude wave propagates through a gas or liquid, acoustic flow occurs. Acoustic flow is a unidirectional steady flow of matter that arises either as a result of viscous losses from wave pulses in a free inhomogeneous field, or in the vicinity of obstacles (cleaning materials, jigs, liquid circulation) within an acoustic field, or near vibrating objects due to inertial losses. Characteristics of ultrasound: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Evaluation technology for ultrasonic propagation conditions based on the measurement and analysis of sound pressure data.
- Scientific Calculation and Simulation Software
- Vibration and Sound Level Meter
- others
Cavitation and acoustic flow of ultrasonic phenomena
- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Basic Information The Ultrasonic System Research Institute has developed ultrasonic <dynamic control> technology that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Note: Control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. Compared to previous control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately in practical applications and is proposed and addressed as consulting (with increasing achievements in precision cleaning and stirring at the nano level). Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)