iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35537items
    • Facilities
      Facilities
      56659items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37011items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31845items
    • others
      others
      84511items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11605items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6980
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Basic experiments on "control technology for acoustic flow."
COMPANY
  • Aug 14, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Aug 14, 2024

Basic experiments on "control technology for acoustic flow."

超音波システム研究所 超音波システム研究所
Basic Experiments on "Control Technology of Acoustic Flow" (Measurement, Analysis, and Control Techniques Using Ultrasonic Testers) The Ultrasonic System Research Institute has developed "Control Technology of Acoustic Flow" suitable for ultrasonic applications such as cleaning, processing, stirring, modification, and chemical reactions, effectively utilizing the acoustic characteristics and vibration modes of tools and flowing liquids according to specific purposes through ultrasonic testers. **Acoustic Flow** General Concept When a finite amplitude wave propagates through a gas or liquid, acoustic flow is generated. Acoustic flow occurs as a result of viscous losses from wave pulses, either in a free heterogeneous field or near obstacles in the sound field (such as cleaning objects, jigs, or liquid circulation) or near vibrating bodies, resulting in a unidirectional steady flow of matter due to inertial losses. Acoustic flow is an important enhancement factor in the majority of ultrasonic processing processes, purification, drying, emulsification, combustion, extraction, etc., significantly promoting heat exchange and material exchange within the medium. The effects of acoustic flow in processing operations are determined by their velocity and dimensional factors.
Acoustic flow control technology
Acoustic flow control technology
Control technology for sound flow
Control technology for sound flow
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

超音波の非線形現象を解析・評価する技術Ver2.pdf[4249655]

Related Links

Ultrasonic Shower Technology Using Ultrasonic Systems
Ultrasonic Shower Technology Using Ultrasonic Systems
Flow-Type Ultrasonic System
Flow-Type Ultrasonic System
Flow-Type Ultrasonic Technology
Flow-Type Ultrasonic Technology
Technology to Control Nonlinear Vibration Phenomena
Technology to Control Nonlinear Vibration Phenomena

Related product

IMG_9355.jpg

Ultrasonic cleaning machine acoustic flow control system (consulting support)

Dynamic Liquid Circulation System of Ultrasonic Cleaners - Acoustic Flow Control

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines propagating in liquid, to set and control the state of ultrasonic cleaning machines according to the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific purposes through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology considering "timbre." Note 2: The know-how involves settings related to the relationships at the boundaries of the cleaning machine, cleaning liquid, and air. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has become possible through degassing, aeration, ultrasound, and elastic waves on the tank surface.

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00093.jpg

Optimization Technology for Ultrasound - Optimization Technology for Resonance Phenomena and Nonlinear Phenomena -

Analysis of sound pressure measurement data (autocorrelation, power spectrum, bispectrum, power contribution rate, impulse response, etc.) evaluation and technology.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that enable control of resonance and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). In contrast to existing control technologies, this technology utilizes new measurement and evaluation parameters (note) related to the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic propagation states of ultrasound tailored to specific applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0600a.jpg

A technology for alleviating surface residual stress through the control of megahertz ultrasonic oscillation.

Surface treatment technology using a megahertz ultrasonic oscillation control probe -- Improvement treatment of metal fatigue strength (relaxation and uniformization of surface residual stress) --

The Ultrasonic System Research Institute has developed methods for measuring, analyzing, and evaluating surface residual stress by applying the following technologies: 1) Manufacturing technology for ultrasonic probes 2) Evaluation technology for ultrasonic propagation conditions 3) Surface inspection technology using ultrasound Based on numerous achievements, we believe that various applications are possible as ultrasonic utilization technology, and we are making related technologies publicly available. Specific examples: Surface treatment know-how: Standard settings Output: 13-15V Rectangular wave: Duty 47.1% Sweep range: 500kHz - 13MHz, 2 seconds Settings for low-intensity targets (or long processing times): Output: 1-3V Rectangular wave: Duty 47.1% Sweep range: 300kHz - 3MHz, 1 second (or 100kHz - 5MHz, 1 second) Note: The oscillation conditions can vary significantly due to the ultrasonic propagation characteristics of the target object and the oscillation characteristics of the function generator. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasonic oscillation control system using an original ultrasonic probe.

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

The Ultrasonic System Research Institute manufactures and sells an "Oscillation System (20MHz)" that allows for easy control of megahertz ultrasonic oscillation. System Overview (Ultrasonic Oscillation System (20MHz)) Contents (20MHz Type) - Two ultrasonic oscillation probes - One set of function generator - One set of operation manual (USB memory) Features (20MHz Type) - Ultrasonic oscillation frequency Specification: 20kHz to 25MHz (or 24MHz) - Output range: 5mVp-p to 20Vp-p - Sampling rate: 200MSa/s (or 250MSa/s) This system utilizes commercially available function generators. We will propose a quoted price with a function generator set according to your needs. Standard Reference Example Oscillation System 20MHz starting from 80,000 yen November 2024: Development of megahertz flow-type ultrasonic technology November 2024: Development of ultrasonic sound pressure data analysis and evaluation technology December 2024: Development of nonlinear oscillation control technology for ultrasonic probes January 2025: Development of megahertz flow-type ultrasonic system

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Ultrasonic oscillation and control technology based on measurement and analysis using an ultrasonic tester.

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by utilizing the interactions generated from simultaneously oscillating two types of ultrasonic probes from one oscillation channel of a function generator. Note: Nonlinear (resonance) phenomena refer to the resonance phenomenon that occurs when the generation of harmonics produced by original oscillation control is realized at high amplitudes, resulting in ultrasonic vibration resonance. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic changes of surface elastic waves to be controlled according to their intended use. In practical terms, multiple (two types of) ultrasonic probes generate multiple (two types of) oscillations (sweep oscillation, pulse oscillation), which create complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure at high frequency propagation states, or achieving low frequency propagation states with high sound pressure levels tailored to the desired natural frequency.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9408.jpg

Surface residual stress relaxation and uniformization technology for ultrasonic transducers.

A technology for alleviating and equalizing the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system.

The Ultrasonic System Research Institute has published a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to relax the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system. This technology for relaxing surface residual stress enables the improvement of fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to achieve effective ultrasonic irradiation conditions through the setting, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology will be offered as a consulting service. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic properties, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Special Construction Method
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Consulting for a degassed fine bubble generation liquid circulation system.

Control technology for acoustic flow (the main cause of ultrasonic effects: nonlinear phenomena) using ultrasound and fine bubbles.

The Ultrasonic System Research Institute has developed a method (system) for the <analysis and evaluation> of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We provide consulting for a degassing microbubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable state, we conduct consulting to add the degassing microbubble generation liquid circulation system to specific tanks present on-site. 1: Explanation of principles 2: Specific proposals tailored to the cleaning machine (device) 3: Explanation of know-how 4: Explanation of verification methods, adjustment methods, and maintenance methods Development of nonlinear vibration control technology using fine bubbles and megahertz ultrasound Regarding this technology, we provide consulting as "vibration measurement technology utilizing ultrasound." Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4497.jpg

Ultrasonic probe characterization technology

Application technologies of <control, measurement, analysis, evaluation> using ultrasonic testers.

The Ultrasonic System Research Institute has developed a new ultrasonic characteristic evaluation technology using megahertz ultrasonic oscillation, based on the analysis results of ultrasonic data propagating on the surface of target objects. This method applies measurement and analysis technology for "sound pressure and vibration" controlled by ultrasonic probe oscillation. We provide consulting and evaluation technology explanations tailored to the development of ultrasonic probes suited to the target object's surface propagation vibration modes. This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, it serves as a fundamental technology for surface inspection of substrate components and preliminary evaluation of precision cleaning parts, utilizing response characteristics derived from combinations of oscillation and reception, establishing new evaluation parameters for ultrasonic vibrations. By constructing and modifying a logical model based on the measurement, analysis, and evaluation of the dynamic characteristics of ultrasonic surface elastic wave propagation phenomena, we have enabled effective utilization tailored to the objectives (evaluation).

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00214.jpg

Megahertz ultrasonic cleaner (consulting available)

Sound flow control technology

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) in the range of 1-100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring, based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the propagation characteristics of ultrasonic waves based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. Note 1: Original Nonlinear Resonance Phenomenon The resonance phenomenon of ultrasonic vibrations occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena. We believe that this technology can be utilized in various fields, and we are implementing proposals in various consulting services.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2771.jpg

Megahertz ultrasonic cleaner (consulting support for utilization technology)

Sound flow control technology

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) from 1 to 100 MHz by utilizing a megahertz ultrasonic oscillation control probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled even in a 1000-liter tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic model of ultrasound. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the propagation characteristics of ultrasound depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1726.jpg

Ultrasonic cleaning machine manufacturing and development consulting

Ultrasonic cleaning machine using a degassed fine bubble (microbubble) generation liquid circulation device.

The Ultrasonic System Research Institute provides consulting services for the manufacturing and development methods of ultrasonic cleaning machines using a "degasified fine bubble (microbubble) generation liquid circulation device" that can efficiently control ultrasonic waves. Ultrasonic Cleaning Machine (Degasified Fine Bubble Generation Liquid Circulation System) --Ultrasonic Cleaning System KT0600K-- 1) Cleaning Tank Material: SUS304 (t = 3.0 mm) Dimensions (internal): W530 × D530 × H370 mm 2) Liquid Circulation Degasified fine bubble generation liquid circulation system Nominal flow rate: 12-30 L/MIN 3) Ultrasonic (Power Supply: AC 100V) MU-300 Transducer Size: 260 × 150 × 90 mm Oscillator Size: 320 × 420 × 145 mm Frequency 1) 28 kHz Output: 300W (MAX) Frequency 2) 40 kHz Output: 300W (MAX) Frequency 3) 72 kHz Output: 300W (MAX)

  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Manufacturing and sales of original ultrasonic systems (sound pressure measurement analysis, oscillation control).

Ultrasonic system combining "Ultrasonic Tester NA (10 MHz)" and "Ultrasonic Oscillator (20 MHz)"

An ultrasonic system that allows for easy measurement analysis and oscillation control. The Ultrasonic System Research Institute is publicly conducting experiments using a system that combines the "Ultrasonic Tester NA (recommended type)," which allows for easy measurement analysis of ultrasonic waves, and the "Ultrasonic Oscillation System (20 MHz)," which enables easy oscillation control of ultrasonic waves. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment Example: Function Generator Note: Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Autocorrelation) 2) Detection of Nonlinear Phenomena (Changes in Bispectrum) 3) Detection of Response Characteristics (Analysis of Impulse Response Characteristics) 4) Detection of Interactions (Analysis of Power Contribution Rates) Note: "R" Free Statistical Processing Language and Environment - autocor: Autocorrelation Analysis Function - bispec: Bispectrum Analysis Function - mulmar: Impulse Response Analysis Function - mulnos: Power Contribution Rate Analysis Function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Ultrasonic oscillation control technology utilizing ultrasonic propagation conditions above 100 MHz.

Ultrasonic control based on the classification of ultrasonic propagation conditions (measurement, analysis, and evaluation of sound pressure data) technology.

The Ultrasonic System Research Institute has developed manufacturing and utilization technologies for ultrasonic probes that control resonance phenomena and nonlinearity regarding surface elastic waves that propagate to objects above 100 MHz with oscillations below 20 MHz. We manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. The key point is the optimization of the propagation characteristics of surface elastic waves on the surface of ultrasonic elements according to the intended use. To achieve this, we adjust the surface of the ultrasonic probe based on the ultrasonic propagation characteristics through acoustic pressure measurement, analysis, and evaluation (acoustic pressure level, frequency range, nonlinearity, dynamic characteristics, etc.) to match the intended use. Ultrasonic Probe Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment Example: Function Generator By understanding the acoustic characteristics of the target object and installation conditions, we have achieved dynamic control of surface elastic waves (propagation state). We realize propagation states tailored to various purposes.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4497.jpg

Manufacturing technology for ultrasonic oscillation control probes (consulting support)

We provide manufacturing technology and data analysis evaluation technology.

The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 100 MHz. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Oscillation Equipment Example: Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. Online support is also available upon request. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment autcor: Analysis of autocorrelation bispec: Analysis of bispectrum mulmar: Analysis of impulse response mulnos: Analysis of power contribution rates

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5165.jpg

Custom-made ultrasonic oscillation measurement and analysis system

A system suitable for management and examination related to ultrasound, including oscillation, measurement, and analysis.

The Ultrasonic System Research Institute (Location: Hachioji City, Tokyo) manufactures and sells custom-made ultrasonic oscillation, measurement, and analysis systems suitable for the management and examination of ultrasonic propagation conditions. << Ultrasonic Oscillation Measurement and Analysis System >> A set that enables optimal ultrasonic cleaning "management" and "examination" by confirming the acoustic characteristics of parts from sound pressure management of ultrasonic cleaners. Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(16)

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

Classification based on ultrasonic (cavitation and acoustic flow) technology - Oscillation control technology - Ultrasonic optimization technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

Ultrasonic Control Method of Megahertz Applying Shannon's Juggling Theorem

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

Mechanism of Ultrasonic Cleaning and Effective Utilization Methods ver3.0 (Acoustic Flow Control through Ultrasonic Sound Pressure Measurement and Analysis Technology)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic stirring (nano-level emulsification, dispersion, and grinding) technology - Nonlinear control of ultrasound -

Ultrasonic stirring (nano-level emulsification, dispersion, and grinding) technology - Nonlinear control of ultrasound -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Function generator oscillation of ultrasonic transducer (megahertz sweep oscillation technology) - Ver5

Function generator oscillation of ultrasonic transducer (megahertz sweep oscillation technology) - Ver5

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

Fine Bubble Vibration Measurement Experiment - Detection of Nonlinear Phenomena Using Fine Bubbles -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic control technology applied with the mathematical theory of communication.

Ultrasonic control technology applied with the mathematical theory of communication.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Technology Utilizing Statistical Thinking - Ver2

Ultrasonic Technology Utilizing Statistical Thinking - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Publication of achievements in the use of ultrasound and microbubbles: Development of iron plating treatment technology.

Publication of achievements in the use of ultrasound and microbubbles: Development of iron plating treatment technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for optimizing various interactions through analysis of ultrasonic sound pressure data.

Technology for optimizing various interactions through analysis of ultrasonic sound pressure data.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation technology for ultrasonic transducers

Surface residual stress relaxation technology for ultrasonic transducers

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Utilization technology of ultrasonic systems (sound pressure measurement analysis, oscillation control)

Utilization technology of ultrasonic systems (sound pressure measurement analysis, oscillation control)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for achieving ultrasonic propagation conditions above 900 MHz.

Technology for achieving ultrasonic propagation conditions above 900 MHz.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Regarding the response during the summer vacation period.

  • NEW
  • COMPANY

We sincerely apologize for the inconvenience, but we will be closed for summer vacation during the following period. Closure period: August 9 (Saturday) to August 17 (Sunday), 2025 Inquiries received during this period will be addressed sequentially starting from August 18 (Monday). We appreciate your understanding and cooperation.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition Thank You for Attending

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition." Thanks to you, we had many visitors and were able to conclude the event successfully. In addition to the "PPLB-445" displayed on the day, we have a variety of products available. For those who were unable to measure samples at the venue, we offer a trial measurement service. Furthermore, for those who would like to know more about our products and services, we also accept online meetings. We welcome inquiries from those who attended as well as those who could not make it this time due to scheduling conflicts. Please feel free to contact us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【New Product Information】Wireless display "NW2991-JP" with long battery life and low power consumption released.

  • NEW
  • PRODUCT

Aioi System is pleased to announce the release of the low-power wireless display "NW2991-JP," which achieves long battery life. This product supports 920MHz band wireless communication and can be operated in conjunction with wired displays. It can be easily integrated into existing systems by simply adding a master unit. With a high-speed response time of under one second and a variety of display functions for text and barcodes, it supports a wide range of applications. ▼ For more details, please see the press release linked below ▼ ■ Main Features - Maintenance-free design with a battery life of one year (low power consumption) - Compatible with mixed operation with wired displays - High-speed response (under one second) and diverse display formats - Stable communication in the 920MHz band ■ You can see the actual product at the exhibition This product will be displayed at the TOPPAN booth during the International Logistics Comprehensive Exhibition 2025, 4th INNOVATION EXPO. We invite you to visit the venue, see the actual product, and experience its performance. Dates: September 10 (Wed) - 12 (Fri), 2025 Venue: Tokyo Big Sight (Halls 4-8) Booth No: 5-907 (TOPPAN booth) Exhibition official website ▶ linked below We sincerely look forward to your visit.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Measurement of cosmetics

Thank you for visiting the Monozukuri World (Measurement, Inspection, and Sensor Exhibition).

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "Monozukuri World (Measurement, Inspection, and Sensor Exhibition) 2025." Thanks to you, we had many visitors, and the event concluded successfully. In addition to the "PPLB-445" showcased on the day, we have a variety of products available. For those who were unable to conduct sample measurements at the venue, we offer a trial measurement service. Furthermore, for those who would like to learn more about our products and services, we also accept online meetings. We welcome inquiries from those who attended, as well as those who were unable to come this time due to scheduling conflicts. Please feel free to reach out to us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.