iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35537items
    • Facilities
      Facilities
      56660items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37011items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31825items
    • others
      others
      84507items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6979
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Classification of Ultrasonic Propagation Phenomena - Optimization Techniques for Cavitation and Acoustic Flow/Surface Elastic Waves Based on Acoustic Pressure Measurement Analysis.
COMPANY
  • Mar 02, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Mar 02, 2023

Classification of Ultrasonic Propagation Phenomena - Optimization Techniques for Cavitation and Acoustic Flow/Surface Elastic Waves Based on Acoustic Pressure Measurement Analysis.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation through the measurement and analysis of ultrasonic propagation states. This classification method estimates linear and nonlinear resonance effects based on the dynamic characteristics (changes in nonlinear phenomena) of the main frequency (power spectrum) related to the ultrasonic propagation state. From previous data analysis, we have been able to categorize effective utilization methods into the following four types: 1: Linear type 2: Nonlinear type 3: Mixed type 4: Variable type Furthermore, the variable type can be further classified into the following three types: 1: Linear variable type 2: Nonlinear variable type 3: Mixed variable type (dynamic variable type) There are numerous successful cases regarding the application of ultrasonic technology based on the development of devices, control settings, and inspections based on the above types. In particular, regarding stability and changes, detailed classification by frequency components has made it possible to efficiently set and adjust various conditions for the intended purpose and effect.
Ultrasonic propagation phenomenon
Ultrasonic propagation phenomenon
Classification of Ultrasonic Propagation Phenomena
Classification of Ultrasonic Propagation Phenomena
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

音響流のダイナミック制御技術.pdf[2020969]

Related Links

Classification of Ultrasonic (Cavitation and Acoustic Flow)
Classification of ultrasonic propagation phenomena (Variable Type) 1: Linear Variable Type 2: Non-linear Variable Type 3: Mixed Variable Type (Dynamic Variable Type)
Category of Monoids
Category of Monoids
Classification of Ultrasonic Propagation Phenomena 1
Classification of Ultrasonic Propagation Phenomena 1
Classification of Ultrasonic Propagation Phenomena 2
Classification of Ultrasonic Propagation Phenomena 2
Classification of Ultrasonic Propagation Phenomena 3
Classification of Ultrasonic Propagation Phenomena 3
Non-linear Propagation Control Technology Using Ultrasonic Probes
Non-linear Propagation Control Technology Using Ultrasonic Probes

Related product

IMG_2989a.jpg

Technology for adjusting the ultrasonic propagation characteristics of ultrasonic elements (piezoelectric elements).

Development technology for ultrasonic probes and ultrasonic oscillation control systems - Aging treatment of piezoelectric elements.

The Ultrasonic System Research Institute has developed a technology to adjust the ultrasonic propagation characteristics of ultrasonic elements (piezoelectric elements) based on measurement, analysis, and evaluation results regarding the propagation state of ultrasound, utilizing ultrasonic systems (sound pressure measurement, oscillation control). To utilize the surface acoustic waves of ultrasonic elements (piezoelectric elements) according to specific purposes, special surface treatments are performed on the element surface. It allows for adjustments to the sound pressure level and frequency range of the propagating ultrasound. By realizing dynamic ultrasonic propagation control through the combination of ultrasound (oscillation control) and surface acoustic waves, it has evolved into an adjustment technology based on the characteristics derived from the analysis of sound pressure data. The key point is the optimization of oscillation conditions (waveform, output, frequency, variations, etc.) that enables efficient control of nonlinear phenomena caused by surface acoustic waves. As specific technologies mentioned above, we provide consulting services for system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with tanks and tools, tailored to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

  • Analysis and prediction system
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7125dd.jpg

Ultrasonic oscillation control technology (consulting support)

Ultrasonic oscillation control technology for controlling nonlinear vibration phenomena

This is a control technology based on measurement, analysis, and evaluation techniques of ultrasonic propagation states, featuring an original nonlinear resonance phenomenon (Note 1). It represents a new application technology for precision cleaning, processing, stirring, inspection, and surface treatment. Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics through original oscillation control, which achieves high amplitude ultrasonic vibrations through resonance phenomena. To efficiently utilize the acoustic properties (surface elastic waves) of various materials, the relaxation treatment of residual stress distribution on surfaces can be easily realized. From an engineering (experimental and technical) perspective on elastic waves and the ultrasonic model of abstract algebra, the original oscillation control method (Note 2) has been developed as an application method for nonlinear phenomena. Note 2: Original Oscillation Control Method Two types of ultrasonic oscillation are performed: one is sweep oscillation control, and the other is pulse oscillation control. Detailed settings are based on the purpose, target object, and tooling, and are configured according to a logical model from the vibration system as a whole.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0046aa.jpg

Ultrasonic control system using ultrasonic probes

Control system using ultrasonic oscillation probe and receiving probe.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control system that applies acoustic characteristic analysis and evaluation technology related to the manufacturing of original products: ultrasonic oscillation probes. This is a new application system for cleaning, modification, inspection, and more, utilizing ultrasonic waves. It is also possible to apply control through the combination of low-frequency vibrations and sounds. Developed from an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model, it serves as an applied system technology. The key point is the utilization method of surface elastic waves. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object (Note 1), it is important to address this as an original nonlinear resonance phenomenon (Note 2). Note 1: Propagation characteristics of ultrasonic waves - Nonlinear characteristics - Response characteristics - Fluctuation characteristics - Effects due to interactions Note 2: Original nonlinear resonance phenomenon This occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena, resulting in ultrasonic vibration resonance phenomena.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103v1.jpg

Improvement technology for ultrasonic cleaners based on sound pressure measurement analysis of nonlinear phenomena.

Application technology for ultrasonic sound pressure measurement, analysis, control, and evaluation systems.

The Ultrasonic System Research Institute has developed technology to control resonance and nonlinear phenomena in the propagation state of surface acoustic waves through the control of ultrasonic oscillation, using a combination of low and high frequencies. By utilizing new ultrasonic propagation materials (such as stainless steel wire and titanium straws), efficient ultrasonic applications tailored to specific purposes become possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology controls the complex changes in surface acoustic waves according to the intended use. Practically, by using multiple (two types of) ultrasonic probes to generate multiple (two types of) oscillations (sweep oscillation and pulse oscillation), complex vibration phenomena (original nonlinear resonance phenomena) are created, achieving high-frequency propagation states at high sound pressure or low-frequency propagation states tailored to the desired natural frequency. In particular, by optimizing the vibration characteristics of tanks and pumps with megahertz ultrasound, efficient ultrasonic control is realized (propagating through 3000 liters of cleaning solution at a 30W output).

  • pump
  • Septic tank equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
kkIMG_0870.jpg

Dynamic Control System of Ultrasonics

Optimization technology based on measurement and analysis of ultrasonic propagation of the target.

<Dynamic Control System for Ultrasound> The propagation state of ultrasound is captured as a system, and analysis and control are performed. Many purposes for utilizing ultrasound involve predicting or controlling the nonlinear phenomena of ultrasound propagating through target objects or liquids. However, in many implementations, numerous issues have been pointed out due to the differences between the theory of cavitation and actual results. In response to such cases: 1) To eliminate obstacles, for ultrasound that changes over time, statistical data processing of sound pressure data is conducted, known as <Measurement and Analysis Technology for Ultrasound Propagation State>. 2) Based on the results of data analysis related to the target, the acoustic characteristics of the target are confirmed through <Technology for Detecting Acoustic Characteristics Related to Surface Elastic Waves of Target Objects and Acoustic Flow of Target Liquids>. 3) By confirming the characteristics, progress is made towards achieving dynamic control of ultrasound through <Technology for Controlling Nonlinear Phenomena with Sweep Oscillation Control for Multiple Ultrasounds>. Through these methods, the utilization state of ultrasound has been improved for efficient use, and there are numerous examples of original ultrasound control systems that achieve the intended use of ultrasound.

  • pump
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Flow and Shape of Ultrasonic Cleaners: Constructal Law

Dynamic control technology for ultrasonic cleaning machines.

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology utilizing the "Constructal Law" related to flow and shape. <References> 1) On Vibration From the Royal Institution's 133rd lecture "Vibration" I intend to describe almost all of the important fields of mechanical engineering here. [Author] Richard B. Bishop [Translator] Hidetaro Nakayama, Kodansha (1981, B-471) 2) Flow and Shape The evolution of all shapes is governed by the "Constructal Law," which aims to improve flow! [Authors] Adrian Bejan, J. Peder Zane [Translator] Hiroyuki Shibata, [Commentator] Shigeo Kimura, Kinokuniya (2013) 3) How Cybernetics Was Born [Author] Norbert Wiener [Translator] Yasuo Shizume, Misuzu Shobo (1956) Using the above as references and hints, we have organized the technology for measuring and utilizing "nonlinear effects" in ultrasonic propagation phenomena according to the "Constructal Law," which aims to improve flow, culminating in ultrasonic cleaning technology.

  • pump
  • Drainage and ventilation equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3543.jpg

Consulting for the development of an ultrasonic cleaning system based on sound pressure data analysis.

Ultrasonic cleaning system that achieves ultrasonic control tailored to the purpose.

This is an effective device using a dedicated ultrasonic tank (original manufacturing method). Due to the high efficiency of ultrasonic utilization, standard tanks lack sufficient strength and durability. Depending on the target and purpose, multiple ultrasonic waves and a degassing fine bubble generation liquid circulation device are controlled based on sound pressure measurement analysis for cleaning, stirring, and surface modification. We propose various combinations and usage (control) methods. The key point is to achieve an ultrasonic propagation state tailored to the target, focusing on the "dissolved oxygen concentration distribution" and "liquid circulation" within the dedicated tank. << Degassing Fine Bubble (Microbubble) Generation Liquid Circulation Device >> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gases to form. The above describes the state of the degassing liquid circulation device. 3) As the concentration of dissolved gases decreases, the bubble size of dissolved gases due to cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles (microbubbles) smaller than 20μ are generated. The above describes the state of the degassing microbubble generation liquid circulation device.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic cleaning machine utilizing nonlinear phenomena from ultrasound and fine bubbles.

Optimization of cavitation and acoustic flow using a degassed fine bubble generation liquid circulation device.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing microbubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: Two types of ultrasonic transducers (standard types 38 kHz, 72 kHz) that perform surface modification treatment using ultrasonic waves and microbubbles. 2: An ultrasonic dedicated tank (standard type, inner dimensions: 500*310*340mm) that performs surface modification treatment using ultrasonic waves and microbubbles. 3: A degassing and microbubble generation liquid circulation system. 4: An optimization control system for ultrasonic output and liquid circulation via a control device. 5: An acoustic pressure management system using an ultrasonic tester. *Features This is an effective device utilizing an ultrasonic dedicated tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank are insufficient. Depending on the target and purpose of cleaning, stirring, and surface modification, two types of ultrasonic transducers are combined and controlled. The recommended combination is in the state of 38 kHz and 72 kHz. Technology for stably utilizing fine bubbles of 20 μm or less.

  • pump
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasonic oscillation control system using an original ultrasonic probe.

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

The Ultrasonic System Research Institute manufactures and sells an "Oscillation System (20MHz)" that allows for easy control of megahertz ultrasonic oscillation. System Overview (Ultrasonic Oscillation System (20MHz)) Contents (20MHz Type) - Two ultrasonic oscillation probes - One set of function generator - One set of operation manual (USB memory) Features (20MHz Type) - Ultrasonic oscillation frequency Specification: 20kHz to 25MHz (or 24MHz) - Output range: 5mVp-p to 20Vp-p - Sampling rate: 200MSa/s (or 250MSa/s) This system utilizes commercially available function generators. We will propose a quoted price with a function generator set according to your needs. Standard Reference Example Oscillation System 20MHz starting from 80,000 yen November 2024: Development of megahertz flow-type ultrasonic technology November 2024: Development of ultrasonic sound pressure data analysis and evaluation technology December 2024: Development of nonlinear oscillation control technology for ultrasonic probes January 2025: Development of megahertz flow-type ultrasonic system

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20211219a.jpg

Nanolevel stirring technology utilizing nonlinear phenomena of ultrasound.

Technology for stirring, emulsifying, dispersing, and grinding at the nanoscale using techniques to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed an effective stirring (emulsification, dispersion, grinding) technology utilizing "technology to control nonlinear phenomena of ultrasound (acoustic flow)." This technology controls ultrasound (cavitation, acoustic flow) by utilizing (evaluating) the ultrasonic propagation characteristics (analysis results) of indirect containers through surface inspection, ultrasonic tanks, and other items. Furthermore, it realizes effective ultrasonic (cavitation, acoustic flow) propagation states tailored to the structure, material, and acoustic properties of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nano level. It has been applied and developed from examples of dispersing metal powders to nanosize. November 2023: Developed ultrasonic oscillation control technology to control nonlinear phenomena. January 2024: Developed technology to measure, analyze, and evaluate the interactions of ultrasonic vibrations. February 2024: Developed surface treatment technology using megahertz ultrasound. April 2024: Developed optimization technology for resonance phenomena and nonlinear phenomena.

  • Concrete admixture
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6802.jpg

Chemical reaction control device using nonlinear phenomenon control of ultrasound.

An experimental system for controlling chemical reactions using megahertz ultrasound.

The Ultrasonic System Research Institute has developed a technology for controlling chemical reactions using ultrasound by utilizing the technology for controlling nonlinear phenomena of ultrasound (acoustic flow). This technology controls ultrasound (cavitation and acoustic flow) tailored to specific purposes through ultrasonic control using a megahertz ultrasonic oscillation probe by measuring and confirming the interactions within the container. Note: Ultrasonic Control By setting the oscillation conditions for sweep oscillation and pulse oscillation using two types of nonlinear resonant ultrasonic oscillation probes, it dynamically controls high-frequency propagation states above 30 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). Note: Ultrasonic Control "Precision Cleaning Example" Sweep Oscillation: 70 kHz – 15 MHz, 15 W Pulse Oscillation: 13 MHz, 8 W Note: Ultrasonic Control "Nano-Level Stirring Example" Sweep Oscillation: 880 kHz – 22 MHz, 12 W Pulse Oscillation: 14 MHz, 10 W In particular, the dynamic characteristics of harmonics through acoustic flow control enable reactions and responses at the nano level.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Ultrasonic oscillation control technology utilizing ultrasonic propagation conditions above 100 MHz.

Ultrasonic control based on the classification of ultrasonic propagation conditions (measurement, analysis, and evaluation of sound pressure data) technology.

The Ultrasonic System Research Institute has developed manufacturing and utilization technologies for ultrasonic probes that control resonance phenomena and nonlinearity regarding surface elastic waves that propagate to objects above 100 MHz with oscillations below 20 MHz. We manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. The key point is the optimization of the propagation characteristics of surface elastic waves on the surface of ultrasonic elements according to the intended use. To achieve this, we adjust the surface of the ultrasonic probe based on the ultrasonic propagation characteristics through acoustic pressure measurement, analysis, and evaluation (acoustic pressure level, frequency range, nonlinearity, dynamic characteristics, etc.) to match the intended use. Ultrasonic Probe Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment Example: Function Generator By understanding the acoustic characteristics of the target object and installation conditions, we have achieved dynamic control of surface elastic waves (propagation state). We realize propagation states tailored to various purposes.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

<Dynamic System of Ultrasonics> - Optimization of Liquid Circulation -

Control technology for acoustic flow (nonlinear phenomena) based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed a system that applies technology to measure and analyze the state of ultrasonic waves propagating in the liquid within an ultrasonic tank, setting and controlling the propagation state of ultrasonic waves according to the effects of the tank's structure, strength, manufacturing conditions, and the state of liquid circulation. The liquid circulation within the ultrasonic tank is captured as a system, and the primary purpose of many ultrasonic (tank) applications is to predict or control the sound pressure changes of the liquid inside the tank. However, numerous issues have been pointed out in many implementations due to discrepancies between theory and practice. In response to such cases: 1) The removal of obstacles involves the use of statistical data analysis methods, which is the technology for measuring and analyzing ultrasonic propagation states. 2) Based on the results of data analysis related to the subject, the characteristics of the subject are confirmed, which is the technology for detecting the acoustic properties related to the surface elastic waves of the object. 3) Progressing to control realization through characteristic confirmation involves technology for controlling nonlinear phenomena. By employing the above methods, the utilization state of ultrasonic waves has been improved for efficient use, and there are numerous examples of original systems that have realized the intended use of ultrasonic waves.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4497.jpg

Manufacturing technology for custom-made ultrasonic oscillation control probes (characteristic testing)

Acoustic property test using ultrasound

The Ultrasonic System Research Institute offers custom-made ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 900 MHz. We manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. The key point is the operational confirmation of the original probes. The responsiveness to dynamic changes in ultrasonic transmission and reception is the most important factor. This characteristic determines the range of applications for harmonics. Currently, we can accommodate the following ranges: Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we achieve propagation states tailored to specific purposes regarding sound pressure levels, frequencies, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, inspection, etc., based on measurement, analysis, and evaluation techniques for ultrasonic propagation states.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Online Individual Consulting: Ultrasonic Technology

Consulting support from the Ultrasonic System Research Institute.

The Ultrasonic System Research Institute will conduct online individual consulting as follows: Participants: 1 company (available range for Microsoft Teams meeting) Cost: 30,000 yen (including tax 33,000 yen) Duration: 150 minutes (e.g., 9:30 AM - 12:00 PM, 1:00 PM - 3:30 PM) Schedule: To be arranged Others: 1) Please use a PC 2) Use of Zoom and Microsoft Teams meeting <Purpose of the Event> ■ Introduction We will conduct online consulting for one participating company (or within the available range for Microsoft Teams meeting). Regarding the use of ultrasound, we will provide specific know-how explanations and discussions based on experience and achievements. If you are interested, please contact us via email. We will propose consulting on your desired theme.

  • Water Treatment
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(20)

Dynamic Control Technology of Acoustic Flow - Ver3

Dynamic Control Technology of Acoustic Flow - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic system technology based on ultrasonic model.

Ultrasonic system technology based on ultrasonic model.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble generation liquid circulation system using commercially available gear pumps and magnetic pumps.

Deaeration fine bubble generation liquid circulation system using commercially available gear pumps and magnetic pumps.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.

Acoustic flow control technology using ultra-fine bubbles and megahertz ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Two-tank ultrasonic cleaning machine (ultrasonic, 28 kHz, 38 kHz, 72 kHz) delivery specification document.

Two-tank ultrasonic cleaning machine (ultrasonic, 28 kHz, 38 kHz, 72 kHz) delivery specification document.

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

Original ultrasonic control model utilizing abstract algebra (control model for nonlinear phenomena)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Deaeration fine bubble generation liquid circulation system used in the <Ultrasonic Dynamic System> - Ver3

Deaeration fine bubble generation liquid circulation system used in the <Ultrasonic Dynamic System> - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for Controlling Low-Frequency Resonance Phenomena and High-Frequency Nonlinear Phenomena - Ver3

Technology for Controlling Low-Frequency Resonance Phenomena and High-Frequency Nonlinear Phenomena - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Installation know-how for ultrasonic transducers (technology for controlling ultrasonic propagation conditions based on installation conditions) ver2

Installation know-how for ultrasonic transducers (technology for controlling ultrasonic propagation conditions based on installation conditions) ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation system (20 MHz) using a commercially available function generator.

Ultrasonic oscillation system (20 MHz) using a commercially available function generator.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Cleaning System (Recommended) 20160712

Cleaning System (Recommended) 20160712

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for achieving ultrasonic propagation conditions above 900 MHz.

Technology for achieving ultrasonic propagation conditions above 900 MHz.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology Utilizing the Interaction of Ultrasonic Probes — Interaction Model of Ultrasound —

Technology Utilizing the Interaction of Ultrasonic Probes — Interaction Model of Ultrasound —

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Main factors of ultrasound utilization (interactions) ver2

Main factors of ultrasound utilization (interactions) ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology for a dynamic control system of ultrasound based on a logical model.

Development technology for a dynamic control system of ultrasound based on a logical model.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic control technology of ultrasound tailored to the purpose of use.

Dynamic control technology of ultrasound tailored to the purpose of use.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for adding megahertz ultrasound to ultrasonic cleaners—dynamic control of ultrasound based on acoustic pressure measurement analysis.

Technology for adding megahertz ultrasound to ultrasonic cleaners—dynamic control of ultrasound based on acoustic pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Analysis and evaluation of ultrasonic sound pressure data (evaluation technology for ultrasonic propagation state based on interaction, response characteristics, and nonlinearity)

Analysis and evaluation of ultrasonic sound pressure data (evaluation technology for ultrasonic propagation state based on interaction, response characteristics, and nonlinearity)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure data analysis technology (feedback analysis technology using multivariate autoregressive models)

Ultrasonic sound pressure data analysis technology (feedback analysis technology using multivariate autoregressive models)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Regarding the response during the summer vacation period.

  • NEW
  • COMPANY

We sincerely apologize for the inconvenience, but we will be closed for summer vacation during the following period. Closure period: August 9 (Saturday) to August 17 (Sunday), 2025 Inquiries received during this period will be addressed sequentially starting from August 18 (Monday). We appreciate your understanding and cooperation.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition Thank You for Attending

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition." Thanks to you, we had many visitors and were able to conclude the event successfully. In addition to the "PPLB-445" displayed on the day, we have a variety of products available. For those who were unable to measure samples at the venue, we offer a trial measurement service. Furthermore, for those who would like to know more about our products and services, we also accept online meetings. We welcome inquiries from those who attended as well as those who could not make it this time due to scheduling conflicts. Please feel free to contact us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【New Product Information】Wireless display "NW2991-JP" with long battery life and low power consumption released.

  • NEW
  • PRODUCT

Aioi System is pleased to announce the release of the low-power wireless display "NW2991-JP," which achieves long battery life. This product supports 920MHz band wireless communication and can be operated in conjunction with wired displays. It can be easily integrated into existing systems by simply adding a master unit. With a high-speed response time of under one second and a variety of display functions for text and barcodes, it supports a wide range of applications. ▼ For more details, please see the press release linked below ▼ ■ Main Features - Maintenance-free design with a battery life of one year (low power consumption) - Compatible with mixed operation with wired displays - High-speed response (under one second) and diverse display formats - Stable communication in the 920MHz band ■ You can see the actual product at the exhibition This product will be displayed at the TOPPAN booth during the International Logistics Comprehensive Exhibition 2025, 4th INNOVATION EXPO. We invite you to visit the venue, see the actual product, and experience its performance. Dates: September 10 (Wed) - 12 (Fri), 2025 Venue: Tokyo Big Sight (Halls 4-8) Booth No: 5-907 (TOPPAN booth) Exhibition official website ▶ linked below We sincerely look forward to your visit.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Measurement of cosmetics

Thank you for visiting the Monozukuri World (Measurement, Inspection, and Sensor Exhibition).

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "Monozukuri World (Measurement, Inspection, and Sensor Exhibition) 2025." Thanks to you, we had many visitors, and the event concluded successfully. In addition to the "PPLB-445" showcased on the day, we have a variety of products available. For those who were unable to conduct sample measurements at the venue, we offer a trial measurement service. Furthermore, for those who would like to learn more about our products and services, we also accept online meetings. We welcome inquiries from those who attended, as well as those who were unable to come this time due to scheduling conflicts. Please feel free to reach out to us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.