iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35537items
    • Facilities
      Facilities
      56659items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37011items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31845items
    • others
      others
      84511items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11605items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6980
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. - Surface modification technology (stress relaxation) through nonlinear oscillation control of ultrasound -
COMPANY
  • Aug 05, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Aug 05, 2024

- Surface modification technology (stress relaxation) through nonlinear oscillation control of ultrasound -

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a technology that efficiently alleviates surface residual stress in components by controlling the nonlinear propagation state of ultrasound, utilizing the acoustic characteristics of the target objects through measurement, analysis, and control techniques related to the propagation state of ultrasound. With this technology to alleviate surface residual stress, it has become possible to improve the fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the settings of the ultrasound propagation state, we have developed control methods and tools that realize effective nonlinear stimulation to the target object. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology is offered as a consulting service. Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)
Nonlinear Oscillation Control of Ultrasonics
Nonlinear Oscillation Control of Ultrasonics
Surface modification (stress relaxation) technology
Surface modification (stress relaxation) technology
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

超音波による「表面残留応力の緩和処理」.pdf[1635877]

Related Links

Surface Modification Technology Using Ultrasonics
Surface Modification Technology Using Ultrasonics

Related product

IMG_9408.jpg

Surface residual stress relaxation and uniformization technology for ultrasonic transducers.

A technology for alleviating and equalizing the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system.

The Ultrasonic System Research Institute has published a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to relax the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system. This technology for relaxing surface residual stress enables the improvement of fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to achieve effective ultrasonic irradiation conditions through the setting, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology will be offered as a consulting service. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic properties, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Special Construction Method
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Consulting for a degassed fine bubble generation liquid circulation system.

Control technology for acoustic flow (the main cause of ultrasonic effects: nonlinear phenomena) using ultrasound and fine bubbles.

The Ultrasonic System Research Institute has developed a method (system) for the <analysis and evaluation> of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We provide consulting for a degassing microbubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable state, we conduct consulting to add the degassing microbubble generation liquid circulation system to specific tanks present on-site. 1: Explanation of principles 2: Specific proposals tailored to the cleaning machine (device) 3: Explanation of know-how 4: Explanation of verification methods, adjustment methods, and maintenance methods Development of nonlinear vibration control technology using fine bubbles and megahertz ultrasound Regarding this technology, we provide consulting as "vibration measurement technology utilizing ultrasound." Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4497.jpg

Ultrasonic probe characterization technology

Application technologies of <control, measurement, analysis, evaluation> using ultrasonic testers.

The Ultrasonic System Research Institute has developed a new ultrasonic characteristic evaluation technology using megahertz ultrasonic oscillation, based on the analysis results of ultrasonic data propagating on the surface of target objects. This method applies measurement and analysis technology for "sound pressure and vibration" controlled by ultrasonic probe oscillation. We provide consulting and evaluation technology explanations tailored to the development of ultrasonic probes suited to the target object's surface propagation vibration modes. This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, it serves as a fundamental technology for surface inspection of substrate components and preliminary evaluation of precision cleaning parts, utilizing response characteristics derived from combinations of oscillation and reception, establishing new evaluation parameters for ultrasonic vibrations. By constructing and modifying a logical model based on the measurement, analysis, and evaluation of the dynamic characteristics of ultrasonic surface elastic wave propagation phenomena, we have enabled effective utilization tailored to the objectives (evaluation).

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2557.jpg

Surface residual stress relaxation and uniformity treatment of ultrasonic cleaner (tank surface).

Improvement process for ultrasonic propagation efficiency due to harmonics above 200 MHz.

The Ultrasonic System Research Institute has made it possible to control the nonlinear propagation state of ultrasound by measuring, analyzing, and controlling the propagation state of ultrasound and applying it as the acoustic characteristics of the target object. As a result, we have developed a technology that efficiently alleviates the residual stress on the surface of components and homogenizes the entire surface. With this technology to alleviate surface residual stress, we have improved fatigue strength against metal fatigue and achieved uniformity in various surface treatments. In particular, by considering the guided waves (surface elastic waves) of the target object in the setting and control of the ultrasonic propagation state, we have developed control methods, tools, and systems that realize effective dynamic changes in the target object as a certain range of stimuli that include nonlinear phenomena. We have confirmed a wide range of effects on various surfaces of metal parts, plastic parts, and powder materials. This technology is offered as a consulting service.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1004.jpg

A new surface inspection technology using megahertz ultrasonic oscillation.

Surface inspection using ultrasonic oscillation from ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type).

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation, based on its track record of analyzing ultrasonic data propagating on the surface of target objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology by developing ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of target objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibration, utilized in surface inspection of substrate components and preliminary evaluation of precision cleaning parts, based on the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to surface elastic wave propagation phenomena, we have enabled effective utilization tailored to the purpose (evaluation) by constructing and modifying logical models.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Development technology consulting for control systems based on ultrasonic models.

To stabilize the effects of cavitation, a statistical perspective is essential.

The Ultrasonic System Research Institute is developing an effective "Ultrasonic Oscillation Control System" based on a statistical approach using abstract algebra in relation to the utilization of ultrasound. Regarding the statistical approach, statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract ideas or methods are developed; this is the characteristic of statistical mathematics. In the research of ultrasound, "a statistical perspective is essential to stabilize the effects of cavitation." About the model: Models are constructed with the aim of effectively advancing understanding, prediction, control, etc., regarding the subject. Constructing an accurate model is difficult, and the examination progresses with representations that appropriately "round off" the complexity of the subject. In that sense, the process of constructing or building a model requires statistical thinking. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Water Treatment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0988.jpg

Surface modification technology (stress relaxation) of ultrasonic beauty devices.

Surface treatment using ultrasonic surface elastic waves.

The Ultrasonic System Research Institute has developed (and published) methods to apply technologies using ultrasound and microbubbles for: 1) Relaxing residual stress near surfaces 2) Removing microscopic burrs in ultrasonic beauty devices. Through the technology that relaxes residual stress using ultrasound and microbubbles, we have experienced improvements in fatigue strength against metal fatigue, which leads to the uniformity of the surface of ultrasonic beauty devices and the efficiency of ultrasonic oscillation and propagation. This significantly changes the usage conditions of ultrasound (the dynamic characteristics of propagation frequency). In particular, the sound pressure level and propagation frequency of ultrasound vary greatly depending on the edge treatment of metal components that come into contact with the skin. By performing uniformity treatment, stable reproducibility and extended lifespan can be achieved. (This has been developed from achievements in ultrasonic cleaning.) We offer this technology as a consulting service.

  • Water Treatment
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
000.jpg

Surface inspection technology using oscillation control of ultrasonic probes.

Surface inspection technology utilizing ultrasonic transmission and reception characteristics.

The Ultrasonic System Research Institute has developed a new surface inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of target objects. This method applies measurement and analysis technology for "sound pressure and vibration" controlled by ultrasonic probe oscillation. We provide consulting and evaluation technology explanations tailored to the development of ultrasonic probes that match the target object's surface vibration modes. This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that correspond to the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, by utilizing response characteristics from combinations of oscillation and reception, this fundamental technology serves as a new evaluation parameter for surface inspection of substrate components and pre-evaluation of precision cleaning parts. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to the propagation phenomena of surface elastic waves, we have enabled effective use tailored to the objectives (evaluation) by constructing and modifying logical models.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Surface modification treatment of ultrasonic cleaners (consulting)

Relaxation and homogenization treatment of surface residual stress using ultrasound and microbubbles!!

The Ultrasonic System Research Institute has developed (and published) a method to adapt technology for relaxing residual stress near surfaces using ultrasound and microbubbles to ultrasonic transducers. The technology for relaxing residual stress through ultrasound and microbubbles has led to improvements in fatigue strength against metal fatigue, which in turn contributes to the uniformity of the surface of ultrasonic transducers and the efficiency of ultrasonic oscillation, significantly changing the usage of ultrasound. In particular, in ultrasonic cleaning using detergents and solvents, ultrasound has been effectively controlled to achieve reflection, refraction, and transmission according to the acoustic characteristics of the target object by setting conditions tailored to the purpose. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function

  • pump
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2989a.jpg

Technology for adjusting the ultrasonic propagation characteristics of ultrasonic elements (piezoelectric elements).

Development technology for ultrasonic probes and ultrasonic oscillation control systems - Aging treatment of piezoelectric elements.

The Ultrasonic System Research Institute has developed a technology to adjust the ultrasonic propagation characteristics of ultrasonic elements (piezoelectric elements) based on measurement, analysis, and evaluation results regarding the propagation state of ultrasound, utilizing ultrasonic systems (sound pressure measurement, oscillation control). To utilize the surface acoustic waves of ultrasonic elements (piezoelectric elements) according to specific purposes, special surface treatments are performed on the element surface. It allows for adjustments to the sound pressure level and frequency range of the propagating ultrasound. By realizing dynamic ultrasonic propagation control through the combination of ultrasound (oscillation control) and surface acoustic waves, it has evolved into an adjustment technology based on the characteristics derived from the analysis of sound pressure data. The key point is the optimization of oscillation conditions (waveform, output, frequency, variations, etc.) that enables efficient control of nonlinear phenomena caused by surface acoustic waves. As specific technologies mentioned above, we provide consulting services for system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with tanks and tools, tailored to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

  • Analysis and prediction system
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Development of dynamic control technology for ultrasound based on sound pressure measurement analysis.

Dynamic control of ultrasound to achieve stress relaxation on metal surfaces.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing two function generators. By generating oscillations with two different waveforms (sweep), we have achieved a technique to control the nonlinear phenomena of ultrasound. Note: The generation of (10th order and higher) harmonics caused by original oscillation control is realized by resonating with low-frequency vibration phenomena, resulting in the generation of high-amplitude harmonics, which is a nonlinear (resonance) phenomenon of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic control of surface elastic wave changes according to the intended application. Practically, multiple (two types of) ultrasonic probes generate multiple (two types of) oscillations (sweep oscillation, pulse oscillation), which create complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure propagation states at high frequencies or low sound pressure levels at frequencies matched to the desired natural frequency.

  • Analysis and prediction system
  • Non-destructive testing
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1365.jpg

Ultrasound and Surface Elastic Waves (Development Technology of Original Ultrasound System)

Original ultrasonic probe's "oscillation and control" technology

The Ultrasonic System Research Institute has developed applied technology that utilizes surface acoustic waves through ultrasonic control. By combining ultrasound and surface acoustic waves, we achieve dynamic control of ultrasonic propagation. The key point is the ability to efficiently control nonlinear phenomena caused by surface acoustic waves. As specific technologies, we have developed system technologies that control nonlinear phenomena (bisectional spectrum) resulting from the interaction of ultrasound with water tanks and tools, tailored to specific purposes (cleaning, stirring, stress relief, inspection, etc.). As a result of utilizing measurement and analysis techniques for ultrasonic propagation states, we have confirmed the realization of harmonic control and the ability to adjust nonlinear phenomena. The know-how lies in confirming and responding to the acoustic characteristics of the system (measurement, analysis, evaluation).

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193iee.jpg

Surface residual stress relaxation treatment technology for ultrasonic transducers (consulting support)

Relaxation Effect of Residual Stress on the Surface of Ultrasonic Transducers — Oscillation of Ultrasonic Transducers Using a Function Generator —

The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to ultrasonic propagation to publish technology that alleviates surface residual stress in ultrasonic transducers using ultrasound and fine bubbles. With this technology to relieve surface residual stress, it has become possible to improve fatigue strength against metal fatigue. As a result, the effectiveness of various components, including ultrasonic tanks, has been demonstrated.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20191129-0001ss.jpg

Surface treatment technology using fine bubbles and ultrasound.

Relaxation and uniform treatment of surface residual stress using ultra-fine bubbles and megahertz acoustic flow control.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the size of the bubbles formed by cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Turbid water and muddy water treatment machines
  • Other measuring instruments
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00994.jpg

Surface modification technology through nonlinear oscillation control of ultrasound (stress relaxation and uniformity).

Surface modification treatment using ultrasonic propagation control above 200 MHz.

The Ultrasonic System Research Institute has made it possible to control the nonlinear propagation of ultrasound by analyzing and applying measurement, analysis, and control techniques related to the propagation state of ultrasound as the acoustic characteristics of the target object. As a result, we have developed a technology that efficiently alleviates residual stress on the surface of components and homogenizes the entire surface. This technology for alleviating surface residual stress improves the fatigue strength against metal fatigue and achieves uniformity in various surface treatments. In particular, by considering the guided waves (surface elastic waves) of the target object in the setting and control of the ultrasound propagation state, we have developed control methods, tools, and systems that realize effective dynamic changes in the target object as a stimulus within a certain range that includes nonlinear phenomena. We have confirmed a wide range of effects on various surfaces of metal parts, plastic parts, and powder materials. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic characteristics, can be utilized and developed as a distinctive inherent operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(13)

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

Ultrasonic cleaning device utilizing fine bubbles (microbubbles) - Dynamic control of acoustic flow -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Publication of achievements in the use of ultrasound and microbubbles: Development of iron plating treatment technology.

Publication of achievements in the use of ultrasound and microbubbles: Development of iron plating treatment technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation technology for ultrasonic transducers

Surface residual stress relaxation technology for ultrasonic transducers

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound and surface elastic waves (development technology for an original ultrasonic system that propagates along the surface of objects)

Ultrasound and surface elastic waves (development technology for an original ultrasonic system that propagates along the surface of objects)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation treatment using megahertz ultrasonic waves

Surface residual stress relaxation treatment using megahertz ultrasonic waves

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation device (optimization technology for cavitation and acoustic flow)

Ultrasonic cleaning technology using a degassed fine bubble generation liquid circulation device (optimization technology for cavitation and acoustic flow)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface treatment technology using ultrasound, microbubbles, and surface elastic waves.

Surface treatment technology using ultrasound, microbubbles, and surface elastic waves.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface modification technology for components used in ultrasonic sound pressure measurement.

Surface modification technology for components used in ultrasonic sound pressure measurement.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Precision cleaning technology using ultrasound—Optimization of cavitation and acoustic flow.

Precision cleaning technology using ultrasound—Optimization of cavitation and acoustic flow.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface treatment technology using fine bubbles and ultrasound - relaxation treatment of surface residual stress through optimization technology of acoustic flow.

Surface treatment technology using fine bubbles and ultrasound - relaxation treatment of surface residual stress through optimization technology of acoustic flow.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Effect of Surface Residual Stress Relaxation of Ultrasonic Transducers: Application Case of Shotless Peening Technology Using Fine Bubbles and Megahertz Ultrasonics.

Effect of Surface Residual Stress Relaxation of Ultrasonic Transducers: Application Case of Shotless Peening Technology Using Fine Bubbles and Megahertz Ultrasonics.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Regarding the response during the summer vacation period.

  • NEW
  • COMPANY

We sincerely apologize for the inconvenience, but we will be closed for summer vacation during the following period. Closure period: August 9 (Saturday) to August 17 (Sunday), 2025 Inquiries received during this period will be addressed sequentially starting from August 18 (Monday). We appreciate your understanding and cooperation.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition Thank You for Attending

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition." Thanks to you, we had many visitors and were able to conclude the event successfully. In addition to the "PPLB-445" displayed on the day, we have a variety of products available. For those who were unable to measure samples at the venue, we offer a trial measurement service. Furthermore, for those who would like to know more about our products and services, we also accept online meetings. We welcome inquiries from those who attended as well as those who could not make it this time due to scheduling conflicts. Please feel free to contact us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【New Product Information】Wireless display "NW2991-JP" with long battery life and low power consumption released.

  • NEW
  • PRODUCT

Aioi System is pleased to announce the release of the low-power wireless display "NW2991-JP," which achieves long battery life. This product supports 920MHz band wireless communication and can be operated in conjunction with wired displays. It can be easily integrated into existing systems by simply adding a master unit. With a high-speed response time of under one second and a variety of display functions for text and barcodes, it supports a wide range of applications. ▼ For more details, please see the press release linked below ▼ ■ Main Features - Maintenance-free design with a battery life of one year (low power consumption) - Compatible with mixed operation with wired displays - High-speed response (under one second) and diverse display formats - Stable communication in the 920MHz band ■ You can see the actual product at the exhibition This product will be displayed at the TOPPAN booth during the International Logistics Comprehensive Exhibition 2025, 4th INNOVATION EXPO. We invite you to visit the venue, see the actual product, and experience its performance. Dates: September 10 (Wed) - 12 (Fri), 2025 Venue: Tokyo Big Sight (Halls 4-8) Booth No: 5-907 (TOPPAN booth) Exhibition official website ▶ linked below We sincerely look forward to your visit.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Measurement of cosmetics

Thank you for visiting the Monozukuri World (Measurement, Inspection, and Sensor Exhibition).

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "Monozukuri World (Measurement, Inspection, and Sensor Exhibition) 2025." Thanks to you, we had many visitors, and the event concluded successfully. In addition to the "PPLB-445" showcased on the day, we have a variety of products available. For those who were unable to conduct sample measurements at the venue, we offer a trial measurement service. Furthermore, for those who would like to learn more about our products and services, we also accept online meetings. We welcome inquiries from those who attended, as well as those who were unable to come this time due to scheduling conflicts. Please feel free to reach out to us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.