iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35582items
    • Facilities
      Facilities
      56724items
    • Lighting and Interior
      Lighting and Interior
      17292items
    • Common materials
      Common materials
      36990items
    • Civil Engineering Materials
      Civil Engineering Materials
      9547items
    • Construction, work and methods
      Construction, work and methods
      27655items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30354items
    • IT/Software
      IT/Software
      32069items
    • others
      others
      84670items
    • Store and facility supplies
      Store and facility supplies
      4353items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      951items
    • Logistics Equipment
      Logistics Equipment
      7381items
    • Energy and Resources
      Energy and Resources
      11604items
  • Search for companies by industry

    • Information and Communications
      7213
    • others
      6996
    • Building materials, supplies and fixtures manufacturers
      6680
    • Service Industry
      4622
    • Trading company/Wholesale
      2999
    • Other construction industries
      2453
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      287
    • Interior construction business
      274
    • Medical and Welfare
      273
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      161
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      36
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic stirring technology at the nano level using two function generators.
PRODUCT
  • Apr 07, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Apr 07, 2023

Ultrasonic stirring technology at the nano level using two function generators.

超音波システム研究所 超音波システム研究所
--- Technology for controlling nonlinear phenomena of ultrasound for nano-level stirring, emulsifying, dispersing, and grinding --- The Ultrasonic System Research Institute has developed effective stirring (emulsifying, dispersing, grinding) technology utilizing "technology for controlling nonlinear phenomena of ultrasound (acoustic flow)." This technology achieves ultrasonic stirring in a glass container by using sweep oscillation through two types of ultrasonic oscillation control probes driven by two function generators, leveraging the propagation phenomenon of surface elastic waves. It optimizes the oscillation conditions and ultrasound (cavitation, acoustic flow) by utilizing (evaluating) the analysis results of sound pressure data regarding the ultrasonic propagation state. Standard settings: 1) Sweep oscillation control 1 from 6 MHz to 20 MHz 2) Sweep oscillation control 2 from 300 kHz to 13 MHz 3) Dynamic control of ultrasound through a low-frequency vibration device (realizing dynamic fluctuation-type ultrasonic propagation control) Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)
Nano-level ultrasonic stirring technology
Nano-level ultrasonic stirring technology
Nano-level ultrasonic agitation technology
Nano-level ultrasonic agitation technology
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

2台のFGを利用した、超音波制御技術.pdf[1418383]

Related Links

Ultrasonic System
A system that simultaneously irradiates two different types of "ultrasonic transducers"
Two Function Generators
Technology for utilizing two function generators
Two Types of Ultrasonic Probes
Technology for oscillation control of two types of ultrasonic probes

Related product

20191129-0001ss.jpg

Surface treatment technology using fine bubbles and ultrasound.

Relaxation and uniform treatment of surface residual stress using ultra-fine bubbles and megahertz acoustic flow control.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the size of the bubbles formed by cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Turbid water and muddy water treatment machines
  • Other measuring instruments
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3168.jpg

Development technology for ultrasonic propagation control systems for various solvents.

Development of an ultrasonic probe utilizing the acoustic properties of Teflon rods (with iron cores).

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control system for various solvents (such as hydrofluoric acid and hydrochloric acid) using Teflon (PTFE). By confirming the basic acoustic properties (response characteristics, propagation characteristics) of Teflon rods (with iron cores), it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). Specifically, using two types of ultrasonic oscillation control probes, we set oscillation conditions based on measurements and analyses of the intended purpose and interactions, combining sweep oscillation and pulse oscillation. In particular, to control low-frequency resonance phenomena, we utilize high-frequency nonlinear phenomena. Therefore, sound pressure measurements require a measurement range of over 100 MHz. The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Fluctuation characteristics - Effects due to interactions

  • pump
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5837.jpg

Nonlinear Oscillation Control Technology of Ultrasound ――Sweep Oscillation Know-How――

Development technology for dynamic control systems using ultrasound.

The Ultrasonic System Research Institute has developed a new nonlinear sweep oscillation control technology for ultrasound, utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveform and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function

  • Water Treatment
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9408.jpg

Surface residual stress relaxation and uniformization technology for ultrasonic transducers.

A technology for alleviating and equalizing the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system.

The Ultrasonic System Research Institute has published a technology that applies measurement, analysis, and control techniques related to the propagation state of ultrasound to relax the surface residual stress of ultrasonic transducers using an ultrasonic and fine bubble generation liquid circulation system. This technology for relaxing surface residual stress enables the improvement of fatigue strength against metal fatigue. In particular, by considering the guided waves (surface elastic waves) of the target object in the propagation state of ultrasound, we have developed a method to achieve effective ultrasonic irradiation conditions through the setting, tooling, and control. We have confirmed a wide range of effects on various types of metal parts, resin parts, and powder materials. This technology will be offered as a consulting service. This is a new surface treatment technology using ultrasound, which, including the general effects based on acoustic properties, can be utilized and developed as a distinctive operational technology for the development of new materials, stirring, dispersion, cleaning, and chemical reaction experiments.

  • Special Construction Method
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20100101-0328_01.png

Ultrasonic oscillation (sweep oscillation, pulse oscillation, ...) system

Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology utilizing nonlinear vibration phenomena based on surface acoustic waves. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, jigs, objects, etc.), the desired ultrasonic propagation state can be achieved through oscillation control. By setting the oscillation conditions (waveform, output, control, etc.) with an original nonlinear resonant ultrasonic oscillation probe, we optimize high-frequency propagation states above 300 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). This technology is an efficient method for utilizing low-output ultrasonic oscillation. The key point is the setting of various parameters utilizing the characteristics of a discrete function generator through digital control. By using the nonlinear resonant ultrasonic oscillation probe, the control range of sound pressure levels due to resonance phenomena is greatly expanded, which is significantly different from conventional sound pressure levels caused by resonance phenomena. Therefore, optimization of control settings based on sound pressure measurement analysis is necessary to avoid phenomena such as damage or destruction.

  • Special Construction Method
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Megahertz ultrasonic system (cleaning, stirring, processing, surface treatment, etc.)

Application of sweep oscillation control technology to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states above 1-700 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for several tons of target objects even in a 1000-liter water tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance phenomena.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193iee.jpg

Surface residual stress relaxation treatment technology for ultrasonic transducers (consulting support)

Relaxation Effect of Residual Stress on the Surface of Ultrasonic Transducers — Oscillation of Ultrasonic Transducers Using a Function Generator —

The Ultrasonic System Research Institute is applying measurement, analysis, and evaluation techniques related to ultrasonic propagation to publish technology that alleviates surface residual stress in ultrasonic transducers using ultrasound and fine bubbles. With this technology to relieve surface residual stress, it has become possible to improve fatigue strength against metal fatigue. As a result, the effectiveness of various components, including ultrasonic tanks, has been demonstrated.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_29771.jpg

Ultrasonic tester NA, which allows for easy measurement and analysis of ultrasonic waves.

Ultrasonic Sound Pressure Measurement Analysis System - Measurement, Analysis, and Evaluation System Using Original Ultrasonic Probes - (Ultrasonic System Research Institute)

This is a measurement system using an ultrasonic probe. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, and is detected as various acoustic performances. Features (Specifications) - Measurement (Analysis) Frequency Range: 0.1 Hz to 200 MHz - Ultrasonic Oscillation: 1 Hz to 1 MHz - Capable of measuring surface vibrations - Continuous measurement for 24 hours is possible - Simultaneous measurement of any two points - Measurement results displayed in graphs - Software for time series data analysis included Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rate) Note: "R" is a free statistical processing language and environment - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_8304.jpg

Original ultrasonic probe for a megahertz ultrasonic system.

Application of megahertz ultrasonic oscillation control technology

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states from 1 to 100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation of several tons of objects can be controlled with an ultrasonic output of less than 20W, even in a 1000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to the resonance phenomenon of ultrasonic vibrations.

  • Other analytical equipment
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

Dynamic control technology of ultrasound through sweeping oscillation of multiple ultrasonic probes.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation through the measurement and analysis of ultrasonic propagation states. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology dynamically controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) related to the propagation state of the ultrasound, based on the dynamic characteristics (changes in nonlinear phenomena). From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1. Two types of sweep oscillation control (linear type) 2. Three types of sweep oscillation control (nonlinear type) 3. Four types of sweep oscillation control (mixed type) 4. Dynamic control (variable type) based on the combinations above. Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1. Linear variable control type 2. Nonlinear variable control type 3. Mixed variable control type (dynamic variable type)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0007kkk.jpg

Technology for using ultrasonic cleaners through sweep oscillation.

- Technology combining sweep oscillation with ultrasonic probes and ultrasonic cleaners -

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probe to ultrasonic cleaners. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, aimed at precision cleaning, processing, and stirring. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic model of ultrasound. The key point is to confirm the ultrasonic propagation characteristics of the target object, which is important for setting the oscillation conditions of the ultrasonic oscillation control probe as an optimization of the system's vibration modes related to sweep oscillation and pulse oscillation, serving as a control method for the original nonlinear resonance phenomenon.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Ultrasound (sweep oscillation, pulse oscillation) system - know-how -

- Technology for controlling nonlinear vibration phenomena through oscillation control of original ultrasonic probes -

The Ultrasonic System Research Institute has developed oscillation control technology based on the acoustic characteristics of probes through the manufacturing technology of original ultrasonic probes. This has evolved into technology for controlling the nonlinear vibration phenomena of surface acoustic waves. The key point is the optimization control method for ultrasonic oscillation control tailored to the propagation characteristics of surface acoustic waves on the surface of ultrasonic elements and their intended use (conditions for combining sweep oscillation and pulse oscillation). To achieve this, it is important to dynamically evaluate the propagation state of ultrasound through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). In particular, it is necessary to measure, analyze, and evaluate the dynamically changing oscillation characteristics of the ultrasonic probe (or element) and the oscillator (function generator) regarding their transmission and reception characteristics. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasonic oscillation control system with a maximum frequency of 25 MHz (manufactured and sold)

We manufacture and sell an "oscillation system at 20 MHz" that allows for easy control of megahertz ultrasonic oscillation.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control system that applies acoustic characteristic analysis and evaluation technology related to the manufacturing of original products: ultrasonic oscillation probes. This is a new application system for cleaning, modification, inspection, and more using ultrasonic waves. It is also possible to apply control through the combination of low-frequency vibrations and sounds. Developed from an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model, this application system technology has been created. The key point is the utilization of surface acoustic waves. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object (Note 1), it is important to address it as an original nonlinear resonance phenomenon (Notes 2, 3). Note 1: Propagation characteristics of ultrasonic waves - Nonlinear characteristics - Response characteristics - Fluctuation characteristics - Effects due to interactions Note 2: Original nonlinear resonance phenomenon The occurrence of harmonics generated by original oscillation control, realized at high amplitudes through resonance phenomena, leads to the resonance phenomenon of ultrasonic vibrations. Note 3: Transient ultrasonic stress wave

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2568.jpg

Development and manufacturing technology of ultrasonic propagation tools based on the control of surface acoustic wave propagation.

We provide consulting services for the development methods of ultrasonic propagation tools tailored to various usage purposes. --Application of sound pressure measurement and analysis technology--

The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 900 MHz, and has created new ultrasonic propagation tools. This technology is available for consulting. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we can achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (such as glass containers), ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0600a.jpg

A technology for alleviating surface residual stress through the control of megahertz ultrasonic oscillation.

Surface treatment technology using a megahertz ultrasonic oscillation control probe -- Improvement treatment of metal fatigue strength (relaxation and uniformization of surface residual stress) --

The Ultrasonic System Research Institute has developed methods for measuring, analyzing, and evaluating surface residual stress by applying the following technologies: 1) Manufacturing technology for ultrasonic probes 2) Evaluation technology for ultrasonic propagation conditions 3) Surface inspection technology using ultrasound Based on numerous achievements, we believe that various applications are possible as ultrasonic utilization technology, and we are making related technologies publicly available. Specific examples: Surface treatment know-how: Standard settings Output: 13-15V Rectangular wave: Duty 47.1% Sweep range: 500kHz - 13MHz, 2 seconds Settings for low-intensity targets (or long processing times): Output: 1-3V Rectangular wave: Duty 47.1% Sweep range: 300kHz - 3MHz, 1 second (or 100kHz - 5MHz, 1 second) Note: The oscillation conditions can vary significantly due to the ultrasonic propagation characteristics of the target object and the oscillation characteristics of the function generator. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasonic oscillation control system using an original ultrasonic probe.

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

The Ultrasonic System Research Institute manufactures and sells an "Oscillation System (20MHz)" that allows for easy control of megahertz ultrasonic oscillation. System Overview (Ultrasonic Oscillation System (20MHz)) Contents (20MHz Type) - Two ultrasonic oscillation probes - One set of function generator - One set of operation manual (USB memory) Features (20MHz Type) - Ultrasonic oscillation frequency Specification: 20kHz to 25MHz (or 24MHz) - Output range: 5mVp-p to 20Vp-p - Sampling rate: 200MSa/s (or 250MSa/s) This system utilizes commercially available function generators. We will propose a quoted price with a function generator set according to your needs. Standard Reference Example Oscillation System 20MHz starting from 80,000 yen November 2024: Development of megahertz flow-type ultrasonic technology November 2024: Development of ultrasonic sound pressure data analysis and evaluation technology December 2024: Development of nonlinear oscillation control technology for ultrasonic probes January 2025: Development of megahertz flow-type ultrasonic system

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(16)

Ultrasonic Oscillation System for Controlling Nonlinear Phenomena (Sweep Oscillation) - Ver4

Ultrasonic Oscillation System for Controlling Nonlinear Phenomena (Sweep Oscillation) - Ver4

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface treatment technology using fine bubbles and ultrasound - relaxation treatment of surface residual stress through optimization technology of acoustic flow.

Surface treatment technology using fine bubbles and ultrasound - relaxation treatment of surface residual stress through optimization technology of acoustic flow.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

How to Optimize Ultrasonic Cleaning Systems—Evaluation Techniques for Cleaning Conditions Based on Ultrasonic Sound Pressure Measurement Analysis—

How to Optimize Ultrasonic Cleaning Systems—Evaluation Techniques for Cleaning Conditions Based on Ultrasonic Sound Pressure Measurement Analysis—

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Control technology for ultrasonic cleaning machines based on sound pressure measurement and analysis.

Control technology for ultrasonic cleaning machines based on sound pressure measurement and analysis.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Propagation Control System for Various Solvents - Ver2

Ultrasonic Propagation Control System for Various Solvents - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Manufacturing, development, and application technology of ultrasonic probes that enable ultrasonic propagation states of 100 MHz and above.

Manufacturing, development, and application technology of ultrasonic probes that enable ultrasonic propagation states of 100 MHz and above.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation technology for ultrasonic transducers

Surface residual stress relaxation technology for ultrasonic transducers

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic technology that controls high frequency with low frequency stimulation.

Ultrasonic technology that controls high frequency with low frequency stimulation.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear Oscillation Control Technology of Ultrasound - Sweep Oscillation Control Technology Using Original Ultrasound Oscillation Control Probe -

Nonlinear Oscillation Control Technology of Ultrasound - Sweep Oscillation Control Technology Using Original Ultrasound Oscillation Control Probe -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation control probe enabling ultrasonic propagation conditions above 600 MHz.

Ultrasonic oscillation control probe enabling ultrasonic propagation conditions above 600 MHz.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound System Specification Document (for *** Co.) - Ultrasound Sound Pressure Measurement, Analysis, Evaluation, and Oscillation Control System -

Ultrasound System Specification Document (for *** Co.) - Ultrasound Sound Pressure Measurement, Analysis, Evaluation, and Oscillation Control System -

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation system of megahertz ultrasonic (US-2024XXXX specifications)

Ultrasonic oscillation system of megahertz ultrasonic (US-2024XXXX specifications)

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Utilization technology of ultrasonic systems (sound pressure measurement analysis, oscillation control)

Utilization technology of ultrasonic systems (sound pressure measurement analysis, oscillation control)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe-based sweep oscillation control technology (optimization of resonance phenomena and nonlinear phenomena based on acoustic pressure measurement analysis)

Ultrasonic probe-based sweep oscillation control technology (optimization of resonance phenomena and nonlinear phenomena based on acoustic pressure measurement analysis)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Vibration measurement, analysis, and evaluation technology using ultrasonic probes with adjustment techniques for ultrasonic elements.

Vibration measurement, analysis, and evaluation technology using ultrasonic probes with adjustment techniques for ultrasonic elements.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization Technology for Ultrasonic Systems - Measurement, Analysis, Evaluation, and Technology of Ultrasonic Sound Pressure

Optimization Technology for Ultrasonic Systems - Measurement, Analysis, Evaluation, and Technology of Ultrasonic Sound Pressure

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Image of wireless set usage

Solve your problems with wired bed exit sensors by connecting a wireless set linked to the nurse call system!

  • NEW
  • PRODUCT

Do you have any concerns or requests regarding wired bed exit sensors? × Tangling or tripping over wired cables × Cable disconnection or damage × Worrying about forgetting to turn the switch back on after temporarily stopping the sensor. × Wanting to be notified of bed exits even from a location far from the nurse call outlet. Such concerns can be resolved simply by connecting our wireless nurse call linked set to the sensor! Our wireless nurse call linked set allows you to connect bed exit sensors like "Ugo-kun," "Foldable Thin Matta-kun," "Ayumi-chan," and "Just Place Pole-kun" to transmitters and receivers, reducing wiring around the bed area, alleviating concerns about tripping or falling due to cables, and contributing to a tidier work environment. Furthermore, it enables the use of bed exit sensors even from locations far from the nurse call outlet, allowing for more flexible equipment placement.

Aug 25, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Truck berth vehicle detection

Truck berth vehicle detection sensor | Hotron Co., Ltd.

  • NEW
  • PRODUCT

A truck berth is a space in a logistics warehouse where trucks can be parked to load and unload goods. By installing sensors in the truck berth to display the occupancy status, it is possible to quickly guide trucks to available spaces. Additionally, sharing the occupancy status with warehouse workers allows for a swift start to loading and unloading, improving overall productivity and reducing truck waiting times. 【Target Products】 - Occupancy detection sensor HM-UX2/UW2 (ceiling-mounted, ultrasonic type) ■ Benefits of Implementation Benefit 1: The HM-UX2 can be installed at high positions without height restrictions. Benefit 2: By setting the detection distance higher than a person's height, false detections caused by people are reduced. Benefit 3: The HM-UX2 is not affected by the floor surface, eliminating false detections caused by small stones or unevenness on the floor. Benefit 4: For locations with many parking spaces, the communication-type ultrasonic sensor HM-UW2 is recommended.

Aug 25, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Asumaru Honpo Co., Ltd. Website TOP (Japan)

We have renewed our website.

  • NEW
  • OTHER

We have renewed our homepage. https://www.asu-maru.com/ English version https://www.asu-maru.com/english

Aug 24, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Does 'order' influence impressions? The 'serial position effect'

SBS Marketing Co., Ltd. "Order" Influences Impressions!? 'Series Position Effect'

  • NEW
  • OTHER

Based on practical experience in both support companies and business companies, SBS Marketing Co., Ltd. provides consulting services related to marketing, sales promotion, and customer acquisition primarily in the BtoB (business-to-business) sector. On August 21, 2025 (Thursday), they published a page titled "Does 'Order' Affect Impressions?! 'Serial Position Effect'". When multiple pieces of information are presented in order, the middle information tends to be less memorable, while the 'first' and 'last' pieces of information are more likely to be retained in memory, known as the 'serial position effect'. The page explains the experimental content that proved this effect, the two theories that support it, examples of its occurrence in business contexts, and points to consider when utilizing it. (Page Overview: Excerpts) ■ What is the 'Serial Position Effect'? ■ Experiments that clarified the 'Serial Position Effect' ■ The two theories that explain the 'Serial Position Effect' ■ Examples of the 'Serial Position Effect' in business contexts ■ Cautions regarding the 'Serial Position Effect' (DL content only) ▼ For more details, please visit this page. https://sbsmarketing.co.jp/blog/serial-position-effect-2025-08/

Aug 23, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

CyberLink releases a new version 8.3 of its AI facial recognition security system FaceMe Security, refreshing the UX and streamlining settings, enabling more complex door control through enhanced integration with facial recognition terminals.

  • NEW
  • PRODUCT

Details of the FaceMe Security 8.3 Update < Revamped UX for Action & Alert Rule Settings > Previously, individual settings were required for each action even within the same rule. By completely overhauling the UI and UX, we have transformed the operation screen to allow for intuitive and efficient configuration. ▶ Key Update Points - Multiple actions (notifications, access control, VMS integration, etc.) can now be set within a single rule. - The settings screen has been consolidated into a single page, allowing for an overview and editing of the entire configuration at a glance. < Enhanced Integration Features with Face Terminal (Facial Recognition Terminal) > FaceMe Security integrates with the MSK Knoctoi series (Standard/Lite), enabling door opening and closing based on facial recognition results without the need for additional devices. This update allows for detailed configuration of door opening and closing rules based on location, time of day, and groups of individuals, enabling more flexible access management tailored to on-site operations. ▶ Expected Implementation Scenarios - All employees can enter the entrance, while only administrators can enter specific areas at night, etc.

Aug 22, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Products

  • Search for Products

Company

  • Search for Companies

Special Features

  • Special Features

Ranking

  • Overall Products Ranking
  • Overall Company Ranking

support

  • site map
IPROS
  • privacy policy Regarding external transmission of information
  • terms of service
  • About Us
  • Careers
  • Advertising
COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
Please note that the English text on this page is automatically translated and may contain inaccuracies.