iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35455items
    • Facilities
      Facilities
      56017items
    • Lighting and Interior
      Lighting and Interior
      17208items
    • Common materials
      Common materials
      36605items
    • Civil Engineering Materials
      Civil Engineering Materials
      9531items
    • Construction, work and methods
      Construction, work and methods
      27338items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29231items
    • IT/Software
      IT/Software
      32644items
    • others
      others
      76476items
    • Store and facility supplies
      Store and facility supplies
      4371items
    • Office and commercial supplies
      Office and commercial supplies
      11366items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      956items
    • Logistics Equipment
      Logistics Equipment
      6759items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7215
    • others
      7020
    • Building materials, supplies and fixtures manufacturers
      6662
    • Service Industry
      4641
    • Trading company/Wholesale
      3002
    • Other construction industries
      2453
    • Electrical equipment construction business
      642
    • Interior Design
      526
    • Facility Design Office
      490
    • Construction Consultant
      465
    • Architectural design office
      361
    • retail
      346
    • Warehousing and transport related industries
      322
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      286
    • Interior construction business
      276
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      252
    • Renovation and home construction industry
      223
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      161
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      37
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic Probe-Based Component Inspection Technology - Statistical Mathematics of Ultrasonic Data (Analysis and Evaluation Using R Language and Environment) -
COMPANY
  • Mar 18, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Mar 18, 2024

Ultrasonic Probe-Based Component Inspection Technology - Statistical Mathematics of Ultrasonic Data (Analysis and Evaluation Using R Language and Environment) -

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a new component inspection technology using ultrasonic probes, based on its track record of analyzing ultrasonic data that propagates along the surface of target objects. This method applies measurement and analysis techniques for "sound pressure and vibration" based on the ultrasonic characteristics of the ultrasonic probe. We provide consulting and evaluation technology explanations tailored to the development of ultrasonic probes suited to the purpose (vibration modes propagating along the surface of the target object). This is an application of measurement, analysis, and evaluation techniques related to new ultrasonic propagation states. By utilizing the nonlinear phenomena of weak ultrasonic waves propagating along the surface of the target object, in accordance with the acoustic characteristics of the ultrasonic probe, it is possible to detect new features related to the surface condition. In particular, by utilizing multiple combinations regarding the sampling time for sound pressure measurement and the range of analysis frequencies, clear features can be detected. Based on experience and achievements in measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to surface elastic wave propagation phenomena, we have enabled effective use tailored to the purpose (evaluation) by constructing and modifying logical models through examination.
Ultrasonic probe-based component inspection technology
Ultrasonic probe-based component inspection technology
Ultrasonic probe-based component inspection technology
Ultrasonic probe-based component inspection technology
  • Inquiry about this news

    Contact Us Online

Related Documents

超音波プローブによる部品検査技術.pdf[1866300]

Related product

IMG_0072c.jpg

Megahertz ultrasonic cleaner (acoustic flow control technology)

Technology for controlling nonlinear phenomena of ultrasound (acoustic flow)

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) in the range of 1-100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled even in a 1000-liter water tank with an ultrasonic output of less than 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metals, glass, plastics). By confirming the propagation characteristics of ultrasonic waves based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. We believe that this technology can be applied in various fields and are implementing proposals in various consulting services.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1231.jpg

Basic Research System on Ultrasonic Cleaning

We have developed a "basic experimental system" for ultrasonic cleaning.

The Ultrasonic System Research Institute has developed a "Fundamental Experimental System" related to ultrasonic cleaning that applies the "ultrasonic system using degassing and microbubble control." - Experimental examples of the developed system - Confirmation of the cleaning effect of cavitation Confirmation of the acceleration effect Confirmation of the cleaning effect by acoustic flow Confirmation of the cleaning effect by liquid circulation Confirmation of the interaction between cavitation and liquid circulation Confirmation of the interaction between the cleaning object and the cleaning tank ..... Ultrasonic propagation characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment autocor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7378.jpg

Ultrasonic oscillation control technology that combines multiple sweep oscillations.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology method controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) of the dynamic characteristics (changes in nonlinear phenomena) related to the propagation state of the ultrasound. From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1: Two types of sweep oscillation control (linear type) 2: Three types of sweep oscillation control (nonlinear type) 3: Four types of sweep oscillation control (mixed type) 4: Dynamic control (variable type) based on the combinations above Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1: Linear variable control type 2: Nonlinear variable control type 3: Mixed variable control type (dynamic variable type)

  • pump
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_351600.jpg

System technology of ultrasound (consulting) through sound pressure data analysis.

It is a technology that enables ultrasonic control tailored to specific purposes.

Ultrasonic System Technology 1: Development technology for dedicated water tanks 2: Improvement technology for ultrasonic transducers 3: Measurement technology for ultrasonic propagation conditions 4: Control technology for ultrasonic (acoustic flow) We provide system technology related to the above. This technology enables ultrasonic control tailored to specific purposes. * Know-how for improving ultrasonic transducers... * * Know-how for designing ultrasonic water tanks... * * Know-how for measuring ultrasonic propagation conditions... * * Know-how for controlling ultrasonic (acoustic flow)... * We offer the above. For more details, please contact the Ultrasonic System Research Institute via email.

  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9593.jpg

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

We will measure, analyze, and evaluate the propagation state of ultrasound using an ultrasonic tester.

Features (for standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 10 MHz * Ultrasonic oscillation Specification: 1 Hz to 100 kHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Attached software for time series data analysis This is a measurement system using an ultrasonic probe. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, detecting various acoustic performances. Ultrasonic Probe: Outline Specifications Measurement range: 0.01 Hz to 10 MHz Oscillation range: 1 kHz to 25 MHz Propagation range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Measurement, analysis, and evaluation techniques of ultrasound using a statistical approach.

To stabilize the effects of ultrasound, a statistical perspective is essential.

The Ultrasonic System Research Institute is developing technologies related to effective "measurement, analysis, and evaluation methods" using a <statistical approach> concerning the utilization of ultrasound. <About the Statistical Approach> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract thoughts or methods are developed. This is the characteristic of statistical mathematics. - From "Statistics in Science" edited by Hirotsugu Akaike <About Models> Models are constructed with the aim of effectively advancing understanding, prediction, and control regarding the subject. Building an accurate model is difficult, and the examination is always conducted in a form that appropriately "rounds off" the complexity of the subject. In this sense, the process of constructing or building a model requires statistical thinking. <About the Relationship Between Models and Current Systems> (Points to Consider When Reflecting) 1) It is necessary to consider that preconceived notions and experiences may not be correct. 2) To think about the essence of a model, I believe it is effective to utilize category theory.

  • Non-destructive testing
  • Other analytical equipment
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103v3.jpg

Ultrasonic propagation control based on technology for measuring and analyzing various interactions of ultrasound.

Nonlinear propagation control technology considering the interaction of ultrasound - Optimization technology for ultrasound -

The Ultrasonic System Research Institute has developed "nonlinear ultrasonic propagation control technology" that takes into account the acoustic characteristics of ultrasonic systems (measuring and analyzing ultrasonic interactions) through the manufacturing technology of sound pressure measurement analysis devices (ultrasonic testers) and megahertz ultrasonic oscillation control probes. With the technology developed this time, it has become possible to achieve dynamic control of ultrasound tailored to specific purposes, based on the measurement and analysis of various interactions involving the target objects, ultrasonic equipment, and tools, through "ultrasonic oscillation (oscillators, transducers, etc.)." Note: Autocorrelation, bispectrum, power contribution rate, impulse response. In particular, by detecting and confirming the interactions between ultrasound and target objects concerning harmonics, effective control for cleaning complex shapes and precision parts (liquid circulation, tools, methods of securing cleaning objects, etc.) becomes clear. Therefore, appropriate selection of ultrasonic frequencies and combinations of transducers with different ultrasonic frequencies can be determined based on the target objects. This is an effective ultrasonic utilization technology tailored to specific purposes for processing, cleaning, surface modification, and promoting chemical reactions.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Case studies of dynamic control of ultrasound based on acoustic pressure measurement analysis.

Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.

The Ultrasonic System Research Institute has been manufacturing and selling measurement and analysis systems for ultrasonic vibrations since April 2012. The system allows for visual confirmation of the nonlinear phenomena of ultrasound (acoustic streaming) and cavitation effects through graphs, considering elastic wave propagation in the analysis of the measured data. To account for the "nonlinear phenomena" in the complex variations of ultrasonic usage conditions, we analyze the autocorrelation and bispectrum using autoregressive models of time series data to evaluate and apply these changes. We have realized numerous new utilization methods according to various purposes. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7125dd.jpg

Megahertz ultrasonic technology - Control of surface acoustic waves -

Technology for developing a nonlinear control system for ultrasound using feedback analysis techniques based on multivariate autoregressive models.

The Ultrasonic System Research Institute has developed dynamic control technology for surface elastic waves, taking into account the propagation characteristics and paths of ultrasound using an original ultrasonic system (sound pressure measurement, analysis, evaluation, and oscillation control). This is a foundational technology for developing a nonlinear control system for ultrasound. It enables various applications tailored to specific purposes (cleaning, processing, stirring, chemical reactions, etc.). We are publishing fundamental experiments on megahertz ultrasound for various materials, structures, and sizes. The key point is the setting of oscillation conditions (waveform, output, frequency, variations, etc.) as a vibration system that allows for efficient control of nonlinear phenomena related to ultrasonic propagation. As specific technologies, we have developed concrete system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks, tools, etc., according to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(11)

Technology for 'relaxation and uniform treatment of surface residual stress' through sweep oscillation control of megahertz ultrasonic waves (consulting available)

Technology for 'relaxation and uniform treatment of surface residual stress' through sweep oscillation control of megahertz ultrasonic waves (consulting available)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic control technology of ultrasound: Control of nonlinear phenomena (acoustic flow) using a degassing fine bubble generation liquid circulation device.

Dynamic control technology of ultrasound: Control of nonlinear phenomena (acoustic flow) using a degassing fine bubble generation liquid circulation device.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface inspection technology using oscillation control of original ultrasonic probes.

Surface inspection technology using oscillation control of original ultrasonic probes.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development and manufacturing technology for new ultrasonic propagation tools utilizing plating technology (Nihon Barrel Industry Co., Ltd.) - Ver2

Development and manufacturing technology for new ultrasonic propagation tools utilizing plating technology (Nihon Barrel Industry Co., Ltd.) - Ver2

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Flow-type Ultrasonic System Technology Based on Ultrasonic Sound Pressure Measurement Analysis - Ver4

Flow-type Ultrasonic System Technology Based on Ultrasonic Sound Pressure Measurement Analysis - Ver4

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Measurement, analysis, and evaluation of ultrasonic sound pressure data.

Measurement, analysis, and evaluation of ultrasonic sound pressure data.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning (control of nonlinear phenomena) technology Ver3 - Precision cleaning technology using fine bubbles and acoustic flow -

Ultrasonic cleaning (control of nonlinear phenomena) technology Ver3 - Precision cleaning technology using fine bubbles and acoustic flow -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

[Please introduce this to the management and general affairs department] Update on the expense reimbursement system implementation case! The input and verification work for FB data that used to take 2-3 hours is now completed in just 5 minutes!

  • NEW
  • OTHER

An article has been published about the case of introducing the expense reimbursement system "Rakuraku Seisan" at TSP Corporation. ~ In the case of TSP ~ Before the introduction, there were challenges such as dealing with the "paper" sent from various locations and the reliance on specific individuals for the tasks. After the introduction, the input and checking of FB data, which used to take 2 to 3 hours, can now be completed in just 5 minutes. Additionally, the mindset of the accounting department, which was previously reliant on manual entry, has changed. [Case Overview] ■ Challenges before introduction - Dealing with "paper" sent from various locations, reliance on specific individuals ■ Key points of introduction - A robust support system for setup and operation - Easy to start from a small scale both financially and functionally *For more details, please refer to the related links or feel free to contact us.

Sep 26, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【Wandering Prevention】 "Nurse Call Linked Wireless Series" Prevents tripping and disconnection caused by cords!

  • NEW
  • PRODUCT

The facility operating the nurse call system has made the bed exit sensor wireless, allowing it to notify in conjunction with the nurse call. By simply connecting the mat sensor "Foldable Thin Matt-kun," the body movement call "Ugo-kun," and the wheelchair body movement call "Ayumi-chan" to the transmitter HB-RS, you can make the bed exit sensor wireless. The infrared sensor "Just Place Pole-kun" has the transmitter HB-RS built-in. 【Features】 ○ Wireless conversion by simply connecting existing sensors to the transmitter HB-WSK. ○ The bed exit sensor notifies wirelessly in conjunction with the nurse call. ○ Up to 5 transmitters can be registered with one receiver. ○ The communication distance between the transmitter and receiver is approximately 10 meters. ◎ For more details, please contact us or download the catalog.

Sep 26, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Full and Empty Management (Medium to Large Scale)

Parking lot occupancy management vehicle detection sensor | Hotron Co., Ltd.

  • NEW
  • PRODUCT

Full and empty management refers to the real-time display of parking availability and the management of efficient use of parking spaces. By utilizing Hotron's sensors, drivers can quickly discover available parking spaces, achieving efficient parking lot operations. ■ For large parking lots, the "floor management method" and "block management method," which focus on cost reduction, are recommended. Sensors are installed at regular intervals to count the number of vehicles passing through. This method offers the advantage of easy installation and low costs. 【Target Products】 - Vehicle Count Sensor CCS2 - Ultrasonic Sensor HM-UX2/UW2 ■ For smaller scale operations, the "space management method," which installs sensors in each parking space to display availability with high accuracy, is recommended. By ensuring accurate full and empty displays, it helps prevent unnecessary entry of new vehicles and enables safe parking lot operations. 【Target Products】 - Occupancy Detection Sensor HM-UX2/UW2 - Occupancy/Pass Detection Sensor HM-LC6 - Occupancy Detection Sensor HM-LC7/LC7-FLS - Occupancy/Pass Detection Sensor HM-S6 - Occupancy Detection Sensor HM-S8

Sep 26, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Non-contact light touch sensor "HA-T401/HA-T520"

A non-contact light touch sensor "HA-T Series" that realizes "wanting to open in a narrower range and in a limited manner" based on the surrounding environment of automatic doors.

  • NEW
  • PRODUCT

The non-contact beam touch sensor "HA-T401/HA-T520" has a compact detection range, making it an ideal automatic door sensor for installation on automatic doors facing narrow corridors or busy streets. Depending on the application and installation location, you can choose between "non-vision mounting type" and "non-vision built-in type." 【Features】 ● With the beam touch sensor, you can open and close the automatic door simply by bringing your hand close without touching it, ensuring hygiene. ● Depending on the installation environment, such as single sliding or bi-parting doors, the detection range can be set in four configurations: left, center, right, and a total of 12 spots. ● Two types of activation row settings are available to reduce unnecessary opening and closing of the automatic door due to cross traffic, contributing to energy-saving effects. ● The touch switch and infrared sensor are integrated, allowing for a switch between beam touch and infrared sensor with a single model. 【Recommended for such locations!】 ☑ Entrance facing a busy corridor ☑ Counter or sign near the door ☑ Buildings facing narrow corridors ☑ Buildings that prioritize aesthetics ☑ Hospitals and facilities that consider hygiene ☑ Large facilities with many doors ◎ For more details, please download the materials or contact us.

Sep 25, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Sep 25, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
  • 位置情報で実現するスマートロジスティクス 排出ガスも待機時間も”見える化”で解決
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.