iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35541items
    • Facilities
      Facilities
      56657items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37004items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27655items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31783items
    • others
      others
      84503items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11462items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7197
    • others
      6979
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2456
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic Probe-Based Component Inspection Technology - Statistical Mathematics of Ultrasonic Data (Analysis and Evaluation Using R Language and Environment) -
COMPANY
  • Mar 18, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Mar 18, 2024

Ultrasonic Probe-Based Component Inspection Technology - Statistical Mathematics of Ultrasonic Data (Analysis and Evaluation Using R Language and Environment) -

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a new component inspection technology using ultrasonic probes, based on its track record of analyzing ultrasonic data that propagates along the surface of target objects. This method applies measurement and analysis techniques for "sound pressure and vibration" based on the ultrasonic characteristics of the ultrasonic probe. We provide consulting and evaluation technology explanations tailored to the development of ultrasonic probes suited to the purpose (vibration modes propagating along the surface of the target object). This is an application of measurement, analysis, and evaluation techniques related to new ultrasonic propagation states. By utilizing the nonlinear phenomena of weak ultrasonic waves propagating along the surface of the target object, in accordance with the acoustic characteristics of the ultrasonic probe, it is possible to detect new features related to the surface condition. In particular, by utilizing multiple combinations regarding the sampling time for sound pressure measurement and the range of analysis frequencies, clear features can be detected. Based on experience and achievements in measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to surface elastic wave propagation phenomena, we have enabled effective use tailored to the purpose (evaluation) by constructing and modifying logical models through examination.
Ultrasonic probe-based component inspection technology
Ultrasonic probe-based component inspection technology
Ultrasonic probe-based component inspection technology
Ultrasonic probe-based component inspection technology
  • Inquiry about this news

    Contact Us Online

Related Documents

超音波プローブによる部品検査技術.pdf[1866300]

Related product

IMG_0072c.jpg

Megahertz ultrasonic cleaner (acoustic flow control technology)

Technology for controlling nonlinear phenomena of ultrasound (acoustic flow)

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) in the range of 1-100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled even in a 1000-liter water tank with an ultrasonic output of less than 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metals, glass, plastics). By confirming the propagation characteristics of ultrasonic waves based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. We believe that this technology can be applied in various fields and are implementing proposals in various consulting services.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1231.jpg

Basic Research System on Ultrasonic Cleaning

We have developed a "basic experimental system" for ultrasonic cleaning.

The Ultrasonic System Research Institute has developed a "Fundamental Experimental System" related to ultrasonic cleaning that applies the "ultrasonic system using degassing and microbubble control." - Experimental examples of the developed system - Confirmation of the cleaning effect of cavitation Confirmation of the acceleration effect Confirmation of the cleaning effect by acoustic flow Confirmation of the cleaning effect by liquid circulation Confirmation of the interaction between cavitation and liquid circulation Confirmation of the interaction between the cleaning object and the cleaning tank ..... Ultrasonic propagation characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment autocor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7378.jpg

Ultrasonic oscillation control technology that combines multiple sweep oscillations.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology method controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) of the dynamic characteristics (changes in nonlinear phenomena) related to the propagation state of the ultrasound. From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1: Two types of sweep oscillation control (linear type) 2: Three types of sweep oscillation control (nonlinear type) 3: Four types of sweep oscillation control (mixed type) 4: Dynamic control (variable type) based on the combinations above Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1: Linear variable control type 2: Nonlinear variable control type 3: Mixed variable control type (dynamic variable type)

  • pump
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_351600.jpg

System technology of ultrasound (consulting) through sound pressure data analysis.

It is a technology that enables ultrasonic control tailored to specific purposes.

Ultrasonic System Technology 1: Development technology for dedicated water tanks 2: Improvement technology for ultrasonic transducers 3: Measurement technology for ultrasonic propagation conditions 4: Control technology for ultrasonic (acoustic flow) We provide system technology related to the above. This technology enables ultrasonic control tailored to specific purposes. * Know-how for improving ultrasonic transducers... * * Know-how for designing ultrasonic water tanks... * * Know-how for measuring ultrasonic propagation conditions... * * Know-how for controlling ultrasonic (acoustic flow)... * We offer the above. For more details, please contact the Ultrasonic System Research Institute via email.

  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9593.jpg

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

We will measure, analyze, and evaluate the propagation state of ultrasound using an ultrasonic tester.

Features (for standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 10 MHz * Ultrasonic oscillation Specification: 1 Hz to 100 kHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Attached software for time series data analysis This is a measurement system using an ultrasonic probe. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, detecting various acoustic performances. Ultrasonic Probe: Outline Specifications Measurement range: 0.01 Hz to 10 MHz Oscillation range: 1 kHz to 25 MHz Propagation range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Measurement, analysis, and evaluation techniques of ultrasound using a statistical approach.

To stabilize the effects of ultrasound, a statistical perspective is essential.

The Ultrasonic System Research Institute is developing technologies related to effective "measurement, analysis, and evaluation methods" using a <statistical approach> concerning the utilization of ultrasound. <About the Statistical Approach> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract thoughts or methods are developed. This is the characteristic of statistical mathematics. - From "Statistics in Science" edited by Hirotsugu Akaike <About Models> Models are constructed with the aim of effectively advancing understanding, prediction, and control regarding the subject. Building an accurate model is difficult, and the examination is always conducted in a form that appropriately "rounds off" the complexity of the subject. In this sense, the process of constructing or building a model requires statistical thinking. <About the Relationship Between Models and Current Systems> (Points to Consider When Reflecting) 1) It is necessary to consider that preconceived notions and experiences may not be correct. 2) To think about the essence of a model, I believe it is effective to utilize category theory.

  • Non-destructive testing
  • Other analytical equipment
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103v3.jpg

Ultrasonic propagation control based on technology for measuring and analyzing various interactions of ultrasound.

Nonlinear propagation control technology considering the interaction of ultrasound - Optimization technology for ultrasound -

The Ultrasonic System Research Institute has developed "nonlinear ultrasonic propagation control technology" that takes into account the acoustic characteristics of ultrasonic systems (measuring and analyzing ultrasonic interactions) through the manufacturing technology of sound pressure measurement analysis devices (ultrasonic testers) and megahertz ultrasonic oscillation control probes. With the technology developed this time, it has become possible to achieve dynamic control of ultrasound tailored to specific purposes, based on the measurement and analysis of various interactions involving the target objects, ultrasonic equipment, and tools, through "ultrasonic oscillation (oscillators, transducers, etc.)." Note: Autocorrelation, bispectrum, power contribution rate, impulse response. In particular, by detecting and confirming the interactions between ultrasound and target objects concerning harmonics, effective control for cleaning complex shapes and precision parts (liquid circulation, tools, methods of securing cleaning objects, etc.) becomes clear. Therefore, appropriate selection of ultrasonic frequencies and combinations of transducers with different ultrasonic frequencies can be determined based on the target objects. This is an effective ultrasonic utilization technology tailored to specific purposes for processing, cleaning, surface modification, and promoting chemical reactions.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Case studies of dynamic control of ultrasound based on acoustic pressure measurement analysis.

Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.

The Ultrasonic System Research Institute has been manufacturing and selling measurement and analysis systems for ultrasonic vibrations since April 2012. The system allows for visual confirmation of the nonlinear phenomena of ultrasound (acoustic streaming) and cavitation effects through graphs, considering elastic wave propagation in the analysis of the measured data. To account for the "nonlinear phenomena" in the complex variations of ultrasonic usage conditions, we analyze the autocorrelation and bispectrum using autoregressive models of time series data to evaluate and apply these changes. We have realized numerous new utilization methods according to various purposes. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7125dd.jpg

Megahertz ultrasonic technology - Control of surface acoustic waves -

Technology for developing a nonlinear control system for ultrasound using feedback analysis techniques based on multivariate autoregressive models.

The Ultrasonic System Research Institute has developed dynamic control technology for surface elastic waves, taking into account the propagation characteristics and paths of ultrasound using an original ultrasonic system (sound pressure measurement, analysis, evaluation, and oscillation control). This is a foundational technology for developing a nonlinear control system for ultrasound. It enables various applications tailored to specific purposes (cleaning, processing, stirring, chemical reactions, etc.). We are publishing fundamental experiments on megahertz ultrasound for various materials, structures, and sizes. The key point is the setting of oscillation conditions (waveform, output, frequency, variations, etc.) as a vibration system that allows for efficient control of nonlinear phenomena related to ultrasonic propagation. As specific technologies, we have developed concrete system technologies that control nonlinear phenomena (bi-spectral) resulting from the interaction of ultrasound with water tanks, tools, etc., according to specific purposes (cleaning, stirring, processing, welding, surface treatment, stress relief treatment, inspection, etc.).

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(11)

Technology for 'relaxation and uniform treatment of surface residual stress' through sweep oscillation control of megahertz ultrasonic waves (consulting available)

Technology for 'relaxation and uniform treatment of surface residual stress' through sweep oscillation control of megahertz ultrasonic waves (consulting available)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic control technology of ultrasound: Control of nonlinear phenomena (acoustic flow) using a degassing fine bubble generation liquid circulation device.

Dynamic control technology of ultrasound: Control of nonlinear phenomena (acoustic flow) using a degassing fine bubble generation liquid circulation device.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface inspection technology using oscillation control of original ultrasonic probes.

Surface inspection technology using oscillation control of original ultrasonic probes.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

Ultrasonic probe (curved surface compatible) using components with iron plating on polyimide film (Nihon Barrel Industry Co., Ltd.)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development and manufacturing technology for new ultrasonic propagation tools utilizing plating technology (Nihon Barrel Industry Co., Ltd.) - Ver2

Development and manufacturing technology for new ultrasonic propagation tools utilizing plating technology (Nihon Barrel Industry Co., Ltd.) - Ver2

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Flow-type Ultrasonic System Technology Based on Ultrasonic Sound Pressure Measurement Analysis - Ver4

Flow-type Ultrasonic System Technology Based on Ultrasonic Sound Pressure Measurement Analysis - Ver4

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

Optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Measurement, analysis, and evaluation of ultrasonic sound pressure data.

Measurement, analysis, and evaluation of ultrasonic sound pressure data.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

Statistical Mathematics of Ultrasonic Data (Analysis using the free statistical processing language and environment "R")

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic cleaning (control of nonlinear phenomena) technology Ver3 - Precision cleaning technology using fine bubbles and acoustic flow -

Ultrasonic cleaning (control of nonlinear phenomena) technology Ver3 - Precision cleaning technology using fine bubbles and acoustic flow -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Regarding the response during the summer vacation period.

  • NEW
  • COMPANY

We sincerely apologize for the inconvenience, but we will be closed for summer vacation during the following period. Closure period: August 9 (Saturday) to August 17 (Sunday), 2025 Inquiries received during this period will be addressed sequentially starting from August 18 (Monday). We appreciate your understanding and cooperation.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition Thank You for Attending

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition." Thanks to you, we had many visitors and were able to conclude the event successfully. In addition to the "PPLB-445" displayed on the day, we have a variety of products available. For those who were unable to measure samples at the venue, we offer a trial measurement service. Furthermore, for those who would like to know more about our products and services, we also accept online meetings. We welcome inquiries from those who attended as well as those who could not make it this time due to scheduling conflicts. Please feel free to contact us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【New Product Information】Wireless display "NW2991-JP" with long battery life and low power consumption released.

  • NEW
  • PRODUCT

Aioi System is pleased to announce the release of the low-power wireless display "NW2991-JP," which achieves long battery life. This product supports 920MHz band wireless communication and can be operated in conjunction with wired displays. It can be easily integrated into existing systems by simply adding a master unit. With a high-speed response time of under one second and a variety of display functions for text and barcodes, it supports a wide range of applications. ▼ For more details, please see the press release linked below ▼ ■ Main Features - Maintenance-free design with a battery life of one year (low power consumption) - Compatible with mixed operation with wired displays - High-speed response (under one second) and diverse display formats - Stable communication in the 920MHz band ■ You can see the actual product at the exhibition This product will be displayed at the TOPPAN booth during the International Logistics Comprehensive Exhibition 2025, 4th INNOVATION EXPO. We invite you to visit the venue, see the actual product, and experience its performance. Dates: September 10 (Wed) - 12 (Fri), 2025 Venue: Tokyo Big Sight (Halls 4-8) Booth No: 5-907 (TOPPAN booth) Exhibition official website ▶ linked below We sincerely look forward to your visit.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Measurement of cosmetics

Thank you for visiting the Monozukuri World (Measurement, Inspection, and Sensor Exhibition).

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "Monozukuri World (Measurement, Inspection, and Sensor Exhibition) 2025." Thanks to you, we had many visitors, and the event concluded successfully. In addition to the "PPLB-445" showcased on the day, we have a variety of products available. For those who were unable to conduct sample measurements at the venue, we offer a trial measurement service. Furthermore, for those who would like to learn more about our products and services, we also accept online meetings. We welcome inquiries from those who attended, as well as those who were unable to come this time due to scheduling conflicts. Please feel free to reach out to us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.