iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35537items
    • Facilities
      Facilities
      56660items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37011items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27653items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31825items
    • others
      others
      84507items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11463items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11606items
  • Search for companies by industry

    • Information and Communications
      7198
    • others
      6979
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2455
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic control technology using two function generators - Nonlinear control technology with an original ultrasonic probe.
PRODUCT
  • Feb 25, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Feb 25, 2023

Ultrasonic control technology using two function generators - Nonlinear control technology with an original ultrasonic probe.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound using two function generators. This technology enables the control of ultrasonic nonlinear phenomena and resonance phenomena through different types of (sweep) oscillations using two different waveforms. By applying this technology, we are developing practical methods to alleviate residual stress on component surfaces and various application technologies, and we provide consulting services. Example 1: 1) Sweep oscillation control from 1.0 MHz to 15 MHz 2) Sweep oscillation control from 0.6 MHz to 5 MHz 3) Precision cleaning at the nano level using a 42 kHz 35W ultrasonic cleaner Example 2: 1) Sweep oscillation control from 3 MHz to 20 MHz 2) Sweep oscillation control from 60 kHz to 3 MHz 3) Nano dispersion treatment of metal powders using a 42 kHz 35W ultrasonic cleaner Standard Settings: 1) Sweep oscillation control from 3 MHz to 20 MHz 2) Sweep oscillation control from 60 kHz to 13 MHz 3) Dynamic control of ultrasound using a 42 kHz 35W ultrasonic cleaner
Ultrasonic control technology using two FG units.
Ultrasonic control technology using two FG units.
Ultrasonic control technology using two FG units.
Ultrasonic control technology using two FG units.
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

2台のファンクションジェネレーターによる、超音波の非線形制御技術.pdf[1469368]

Related Links

Ultrasonic Oscillation Technology Using Two Function Generators
The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound using two function generators. This technology enables the control of nonlinear phenomena and resonance phenomena in ultrasound through different types of (sweep) oscillation using two different waveforms.

Related product

IMG_1921.jpg

Ultrasonic oscillation control system using an original ultrasonic probe.

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

The Ultrasonic System Research Institute manufactures and sells an "Oscillation System (20MHz)" that allows for easy control of megahertz ultrasonic oscillation. System Overview (Ultrasonic Oscillation System (20MHz)) Contents (20MHz Type) - Two ultrasonic oscillation probes - One set of function generator - One set of operation manual (USB memory) Features (20MHz Type) - Ultrasonic oscillation frequency Specification: 20kHz to 25MHz (or 24MHz) - Output range: 5mVp-p to 20Vp-p - Sampling rate: 200MSa/s (or 250MSa/s) This system utilizes commercially available function generators. We will propose a quoted price with a function generator set according to your needs. Standard Reference Example Oscillation System 20MHz starting from 80,000 yen November 2024: Development of megahertz flow-type ultrasonic technology November 2024: Development of ultrasonic sound pressure data analysis and evaluation technology December 2024: Development of nonlinear oscillation control technology for ultrasonic probes January 2025: Development of megahertz flow-type ultrasonic system

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20211219a.jpg

Nanolevel stirring technology utilizing nonlinear phenomena of ultrasound.

Technology for stirring, emulsifying, dispersing, and grinding at the nanoscale using techniques to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed an effective stirring (emulsification, dispersion, grinding) technology utilizing "technology to control nonlinear phenomena of ultrasound (acoustic flow)." This technology controls ultrasound (cavitation, acoustic flow) by utilizing (evaluating) the ultrasonic propagation characteristics (analysis results) of indirect containers through surface inspection, ultrasonic tanks, and other items. Furthermore, it realizes effective ultrasonic (cavitation, acoustic flow) propagation states tailored to the structure, material, and acoustic properties of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nano level. It has been applied and developed from examples of dispersing metal powders to nanosize. November 2023: Developed ultrasonic oscillation control technology to control nonlinear phenomena. January 2024: Developed technology to measure, analyze, and evaluate the interactions of ultrasonic vibrations. February 2024: Developed surface treatment technology using megahertz ultrasound. April 2024: Developed optimization technology for resonance phenomena and nonlinear phenomena.

  • Concrete admixture
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2447.jpg

Ultrasonic control technology using two function generators.

New ultrasonic dynamic control technology

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound using two function generators. This technology enables the control of ultrasonic nonlinear phenomena and resonance phenomena through different types of (sweep) oscillation using two different waveforms. By applying this technology, we are developing practical methods to relieve surface residual stress in components and various application technologies, and we provide consulting services. Standard settings: 1) Sweep oscillation control from 3 MHz to 20 MHz 2) Sweep oscillation control from 60 kHz to 13 MHz 3) Ultrasonic dynamic control using a 42 kHz 35W ultrasonic cleaner (realizing dynamic fluctuation-type ultrasonic propagation control) Note: Regarding the surface of the ultrasonic cleaner's tank, surface residual stress relief and uniform treatment are performed using an ultrasonic oscillation control probe and a degassing fine bubble generation liquid circulation device. As a result of the uniformization effect, ultrasonic control using harmonics above 200 MHz has been achieved.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7308.jpg

Propagation characteristics of ultrasound - vibration modes, nonlinear phenomena, response characteristics, interactions -

Technology for evaluating the dynamic characteristics of original ultrasonic probes—self-correlation, bispectrum, impulse response characteristics, power contribution rate.

Technology for Evaluating the Dynamic Characteristics of Ultrasonic Probes We offer consulting services for this technology. If you are interested, please contact us via email. By utilizing the acoustic properties (surface elastic waves) of various materials (glass containers, etc.), we have confirmed the effects of ultrasonic stimulation on structures, machine tools, and various manufacturing lines, even in a 5000-liter water tank with ultrasonic output below 20W. This was developed as a method for controlling and applying nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave motion and an ultrasonic model from abstract algebra. The key point is the technology for utilizing surface elastic waves on ultrasonic element surfaces. By confirming the propagation characteristics of ultrasound based on the conditions of the target object (material, shape, structure, size, quantity, etc.), it is important to address it as an original nonlinear resonance phenomenon. Note 1: Propagation characteristics of ultrasound Propagation characteristics of ultrasonic probes: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0431.jpg

Ultrasonic sound pressure measurement analysis (consulting support)

Ultrasound consulting specialized in measurement and analysis of ultrasonic propagation conditions.

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained using ultrasonic testers in chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, drawing on the principles of statistical mathematics. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on good confirmations.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Consulting for a degassed fine bubble generation liquid circulation system.

Control technology for acoustic flow (the main cause of ultrasonic effects: nonlinear phenomena) using ultrasound and fine bubbles.

The Ultrasonic System Research Institute has developed a method (system) for the <analysis and evaluation> of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We provide consulting for a degassing microbubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable state, we conduct consulting to add the degassing microbubble generation liquid circulation system to specific tanks present on-site. 1: Explanation of principles 2: Specific proposals tailored to the cleaning machine (device) 3: Explanation of know-how 4: Explanation of verification methods, adjustment methods, and maintenance methods Development of nonlinear vibration control technology using fine bubbles and megahertz ultrasound Regarding this technology, we provide consulting as "vibration measurement technology utilizing ultrasound." Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
data1.jpg

Machining technology utilizing megahertz ultrasonic vibrations.

Machining technology using ultrasonic systems (sound pressure measurement analysis, oscillation control).

The Ultrasonic System Research Institute has developed "ultrasonic oscillation control (processing) technology" that utilizes the acoustic characteristics (vibration response characteristics and nonlinear phenomena) of objects (tools, target items, etc.) through a sound pressure measurement analysis device (ultrasonic tester) and a megahertz ultrasonic oscillation control probe. With this developed technology, it has become possible to control nonlinear vibration phenomena in target objects through "ultrasonic oscillation and output control," achieving dynamic control of ultrasonic waves (changes in bispectrum). The original ultrasonic oscillation control probe allows for the utilization and control of nonlinear effects of ultrasonic vibrations. This is an effective ultrasonic utilization (control) technology tailored to applications such as processing, cleaning, surface modification, and promoting chemical reactions. There are interactions with the acoustic characteristics of cutting tools (drills, reamers, cutters, knives, etc.) and the size and material of cutting oils, jigs, and target objects, making the analysis (self-correlation, impulse response, contribution rate, bispectrum) complex. However, various optimizations based on the analysis results of sound pressure measurement data become possible.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3690.jpg

Dynamic liquid circulation system for ultrasonic cleaning machines (consulting available)

Optimization technology for ultrasonic cleaning machines

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines, which propagate through the liquid, to set and control the state of ultrasonic cleaning machines according to specific purposes, taking into account the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific objectives through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology that considers "timbre." Note 2: The know-how involves settings related to the relationships between the cleaning machine, cleaning solution, and air at their respective boundaries. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has been made possible through degassing, aeration, ultrasound, and elastic wave dynamics on the tank surface.

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5837.jpg

Nonlinear Oscillation Control Technology of Ultrasound ――Sweep Oscillation Know-How――

Development technology for dynamic control systems using ultrasound.

The Ultrasonic System Research Institute has developed a new nonlinear sweep oscillation control technology for ultrasound, utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveform and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function

  • Water Treatment
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240115abcss.png

Consulting on ultrasonic technology based on sound pressure measurement analysis.

- Technology for controlling oscillations of low-frequency resonance phenomena and high-frequency nonlinear phenomena -

<<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in terms of the response characteristics of ultrasonic vibration phenomena concerning the surface condition of the target object through impulse response characteristics and autocorrelation analysis. 3) The interaction between the oscillation and the target object (cleaning items, cleaning solution, water tank, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analytical method is realized based on past experiences and achievements, adapting the analysis techniques of time series data to the measurement data of ultrasound to capture the dynamic characteristics of complex ultrasonic vibrations. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5510-2.jpg

Ultrasound system development technology based on sound pressure data analysis.

A technology for measuring, analyzing, and evaluating the propagation state of ultrasound, applied using feedback analysis techniques based on multivariate autoregressive models.

The Ultrasonic System Research Institute conducts consulting related to the use of ultrasound by utilizing a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the previous measurements, analyses, and results (note) obtained using ultrasonic testers in a chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our new understanding of the relationships regarding various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective concerning the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic cleaning machine utilizing nonlinear phenomena from ultrasound and fine bubbles.

Optimization of cavitation and acoustic flow using a degassed fine bubble generation liquid circulation device.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing microbubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: Two types of ultrasonic transducers (standard types 38 kHz, 72 kHz) that perform surface modification treatment using ultrasonic waves and microbubbles. 2: An ultrasonic dedicated tank (standard type, inner dimensions: 500*310*340mm) that performs surface modification treatment using ultrasonic waves and microbubbles. 3: A degassing and microbubble generation liquid circulation system. 4: An optimization control system for ultrasonic output and liquid circulation via a control device. 5: An acoustic pressure management system using an ultrasonic tester. *Features This is an effective device utilizing an ultrasonic dedicated tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank are insufficient. Depending on the target and purpose of cleaning, stirring, and surface modification, two types of ultrasonic transducers are combined and controlled. The recommended combination is in the state of 38 kHz and 72 kHz. Technology for stably utilizing fine bubbles of 20 μm or less.

  • pump
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240627-2.jpg

Improvement technology for ultrasonic cleaning machines (consulting support)

Optimization of Ultrasonic Propagation State Based on Acoustic Pressure Measurement Analysis - Optimal Control of Resonance Phenomena and Nonlinear Phenomena -

Methods to Improve the Current Ultrasonic Cleaning Machine (Development of Optimization Technology for Ultrasonic Tanks and Liquid Circulation) The Ultrasonic System Research Institute has developed technology to control the propagation state of ultrasonic waves by analyzing the effects of the structure, strength, and manufacturing conditions of the ultrasonic tank, as well as by setting the method of liquid circulation within the tank. This technology allows for the analysis and evaluation of the dynamic characteristics of complex ultrasonic vibrations in relation to various factors, enabling the setting of the circulation pump method to adjust the effects of cavitation and acceleration according to specific objectives. Note: The settings regarding the relationship between the tank, circulating liquid, and air are proprietary knowledge. This technology can also be applied to tanks that do not have an overflow structure. As a specific response, we can address the issues of ultrasonic attenuation caused by the current tank by adjusting the settings of the liquid circulation pump. In particular, for precise cleaning at the nano level, we propose additional measures for oscillation control using megahertz ultrasonic oscillation probes.

  • pump
  • Turbid water and muddy water treatment machines
  • Water treatment technology and systems

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(13)

Technology for controlling two types of ultrasonic probes from a single oscillation channel - Ver3

Technology for controlling two types of ultrasonic probes from a single oscillation channel - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

Megahertz ultrasonic oscillation system (20 MHz) - Ultrasonic oscillation control system using original ultrasonic probe -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation (sweep oscillation, pulse oscillation) system

Ultrasonic oscillation (sweep oscillation, pulse oscillation) system

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation and uniformity treatment technology utilizing megahertz ultrasonic oscillation control technology.

Surface residual stress relaxation and uniformity treatment technology utilizing megahertz ultrasonic oscillation control technology.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Measurement technology for various vibrations using ultrasound.

Measurement technology for various vibrations using ultrasound.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear control technology for ultrasound - Key factor in ultrasonic cleaning: Technology to optimize acoustic flow.

Nonlinear control technology for ultrasound - Key factor in ultrasonic cleaning: Technology to optimize acoustic flow.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development and manufacturing support for ultrasound probes - Consulting support for manufacturing technology know-how -

Development and manufacturing support for ultrasound probes - Consulting support for manufacturing technology know-how -

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

A technology for controlling the generation of harmonics by adjusting the surface of the ultrasonic probe element.

A technology for controlling the generation of harmonics by adjusting the surface of the ultrasonic probe element.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation control technology based on surface acoustic characteristics — high frequency, low frequency, resonance, nonlinearity —

Ultrasonic oscillation control technology based on surface acoustic characteristics — high frequency, low frequency, resonance, nonlinearity —

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement, analysis, and evaluation technology 2024-5-24

Ultrasonic sound pressure measurement, analysis, and evaluation technology 2024-5-24

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Consulting services for the manufacturing and evaluation technology of ultrasound probes.

Consulting services for the manufacturing and evaluation technology of ultrasound probes.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Regarding the response during the summer vacation period.

  • NEW
  • COMPANY

We sincerely apologize for the inconvenience, but we will be closed for summer vacation during the following period. Closure period: August 9 (Saturday) to August 17 (Sunday), 2025 Inquiries received during this period will be addressed sequentially starting from August 18 (Monday). We appreciate your understanding and cooperation.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition Thank You for Attending

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "High-Performance Materials Week [Osaka] 13th High-Performance Plastics Exhibition." Thanks to you, we had many visitors and were able to conclude the event successfully. In addition to the "PPLB-445" displayed on the day, we have a variety of products available. For those who were unable to measure samples at the venue, we offer a trial measurement service. Furthermore, for those who would like to know more about our products and services, we also accept online meetings. We welcome inquiries from those who attended as well as those who could not make it this time due to scheduling conflicts. Please feel free to contact us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

【New Product Information】Wireless display "NW2991-JP" with long battery life and low power consumption released.

  • NEW
  • PRODUCT

Aioi System is pleased to announce the release of the low-power wireless display "NW2991-JP," which achieves long battery life. This product supports 920MHz band wireless communication and can be operated in conjunction with wired displays. It can be easily integrated into existing systems by simply adding a master unit. With a high-speed response time of under one second and a variety of display functions for text and barcodes, it supports a wide range of applications. ▼ For more details, please see the press release linked below ▼ ■ Main Features - Maintenance-free design with a battery life of one year (low power consumption) - Compatible with mixed operation with wired displays - High-speed response (under one second) and diverse display formats - Stable communication in the 920MHz band ■ You can see the actual product at the exhibition This product will be displayed at the TOPPAN booth during the International Logistics Comprehensive Exhibition 2025, 4th INNOVATION EXPO. We invite you to visit the venue, see the actual product, and experience its performance. Dates: September 10 (Wed) - 12 (Fri), 2025 Venue: Tokyo Big Sight (Halls 4-8) Booth No: 5-907 (TOPPAN booth) Exhibition official website ▶ linked below We sincerely look forward to your visit.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Measurement of cosmetics

Thank you for visiting the Monozukuri World (Measurement, Inspection, and Sensor Exhibition).

  • NEW
  • COMPANY

Thank you very much for visiting our booth at the "Monozukuri World (Measurement, Inspection, and Sensor Exhibition) 2025." Thanks to you, we had many visitors, and the event concluded successfully. In addition to the "PPLB-445" showcased on the day, we have a variety of products available. For those who were unable to conduct sample measurements at the venue, we offer a trial measurement service. Furthermore, for those who would like to learn more about our products and services, we also accept online meetings. We welcome inquiries from those who attended, as well as those who were unable to come this time due to scheduling conflicts. Please feel free to reach out to us.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.