iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35519items
    • Facilities
      Facilities
      56038items
    • Lighting and Interior
      Lighting and Interior
      17346items
    • Common materials
      Common materials
      36683items
    • Civil Engineering Materials
      Civil Engineering Materials
      9545items
    • Construction, work and methods
      Construction, work and methods
      27334items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29200items
    • IT/Software
      IT/Software
      33713items
    • others
      others
      76642items
    • Store and facility supplies
      Store and facility supplies
      4385items
    • Office and commercial supplies
      Office and commercial supplies
      11487items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6772items
    • Energy and Resources
      Energy and Resources
      11675items
  • Search for companies by industry

    • Information and Communications
      7218
    • others
      7037
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4659
    • Trading company/Wholesale
      3002
    • Other construction industries
      2449
    • Electrical equipment construction business
      642
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      466
    • Architectural design office
      359
    • retail
      346
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      278
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      251
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      30
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      7
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Surface inspection technology using oscillation control of original ultrasonic probes.
PRODUCT
  • Nov 06, 2022
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Nov 06, 2022

Surface inspection technology using oscillation control of original ultrasonic probes.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of objects. This method applies measurement and analysis technology for "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology by developing ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the object, it is possible to detect new features regarding the surface condition of the object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibrations, utilized in surface inspection of substrate components and preliminary evaluation of precision cleaning parts, leveraging the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to surface elastic wave propagation phenomena, we have enabled effective use tailored to the purpose (evaluation) by constructing and modifying logical models based on these assessments.
Surface inspection technology
Surface inspection technology
Surface inspection technology
Surface inspection technology
  • Inquiry about this news

    Contact Us Online

Related Documents

オリジナル超音波プローブの発振制御による表面検査技術.pdf[2362023]

Related product

1249193d20023sss.jpg

Manufacturing and sales of original ultrasonic systems (sound pressure measurement analysis, oscillation control).

Ultrasonic system combining "Ultrasonic Tester NA (10 MHz)" and "Ultrasonic Oscillator (20 MHz)"

An ultrasonic system that allows for easy measurement analysis and oscillation control. The Ultrasonic System Research Institute is publicly conducting experiments using a system that combines the "Ultrasonic Tester NA (recommended type)," which allows for easy measurement analysis of ultrasonic waves, and the "Ultrasonic Oscillation System (20 MHz)," which enables easy oscillation control of ultrasonic waves. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment Example: Function Generator Note: Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Autocorrelation) 2) Detection of Nonlinear Phenomena (Changes in Bispectrum) 3) Detection of Response Characteristics (Analysis of Impulse Response Characteristics) 4) Detection of Interactions (Analysis of Power Contribution Rates) Note: "R" Free Statistical Processing Language and Environment - autocor: Autocorrelation Analysis Function - bispec: Bispectrum Analysis Function - mulmar: Impulse Response Analysis Function - mulnos: Power Contribution Rate Analysis Function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasound oscillation system using original ultrasound probes.

An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). **Technology for Controlling Nonlinear Ultrasonic Vibration Phenomena** 1) Control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator, tailored to the acoustic characteristics of the target object. 2) Manufacturing technology for an ultrasonic oscillation control probe that enables control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for an ultrasonic measurement probe that allows for the measurement of changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasonic waves according to specific objectives. Note: The dynamic control of ultrasonic waves is performed based on the analysis and evaluation of sound pressure data related to nonlinear phenomena, considering the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control. (Sound pressure measurement, analysis, confirmation, and evaluation are conducted using an ultrasonic tester.)

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230412i.jpg

Maintenance technology for equipment utilizing ultrasonic "vibration measurement technology."

A completely new vibration measurement technology using original products (ultrasonic testers).

The Ultrasonic System Research Institute has developed a completely new <vibration measurement technology> using its original product (ultrasonic tester). The ultrasonic sound pressure measurement analysis technology developed so far applies the "measurement, analysis, and control" technology related to the nonlinear phenomena of ultrasound. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasound propagating on surfaces, we have developed technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.001 Hz) to high frequencies (700 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining, we have made it possible to respond with vibration control and management based on the measurement and analysis of new vibration phenomena. This is a new method and technology, and various application cases have developed from the analysis results so far. In particular, continuous data collection for a standard measurement time of 72 hours is possible, allowing measurement of low-frequency vibrations and irregularly fluctuating vibrations (maximum measurement can be overwritten over a continuous period of 14 days).

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
eeIMG_8566ss.jpg

Ultrasonic equipment measurement and analysis services (consulting support)

We provide on-site services for the measurement, analysis, and evaluation of ultrasonic equipment.

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound The Ultrasound System Research Institute has developed a method (system) for the <analysis, experimentation, and evaluation> of ultrasound, utilizing "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. Using this technology, we conduct <sound pressure measurement, experimentation, analysis, and evaluation> (including on-site support) for ultrasonic cleaning machines. To evaluate the complex and varying usage conditions of ultrasound, we do not rely solely on sound pressure and frequency; instead, we consider "timbre." We analyze it using a time series data autoregressive model and report and propose <evaluation and application> based on statistical models.

  • pump
  • Turbid water and muddy water treatment machines
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231231aa.png

Consulting services based on the classification technology of ultrasonic propagation phenomena.

Ultrasonic control technology based on the classification of nonlinear phenomena in which ultrasonic vibrations propagate.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibration propagation by analyzing measurement data of ultrasonic propagation states using bispectral analysis. The method developed in this instance estimates the linear and nonlinear resonance effects based on the dynamic characteristics (changes in nonlinear phenomena) of the main frequencies (power spectrum) related to the ultrasonic propagation state. From previous data analysis, we have been able to classify effective utilization methods into the following four types: 1: Linear type 2: Nonlinear type 3: Mixed type 4: Variable type There are numerous successful cases of device development and control settings based on each of the above types. This technology will be offered as a consulting service. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: The following tools will be used for analysis. Note: "R" is a free statistical processing language and environment.

  • Other Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220712bss.jpg

Manufacturing technology for ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type)

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 500 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed through acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., and through oscillation control, we achieve propagation states tailored to specific purposes regarding acoustic pressure levels, frequencies, and dynamic characteristics. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Consulting services based on sound pressure measurement analysis using ultrasonic technology.

Consulting on ultrasonic cleaning technology using optimization techniques for cavitation and acoustic flow.

The Ultrasonic System Research Institute has developed a technology that applies "measurement, analysis, and control" techniques related to the nonlinearity of ultrasound to analyze and evaluate the dynamic characteristics of ultrasonic vibrations propagating through various media (elastic bodies, liquids, gases). This technology optimizes interactions related to cleaning objects, tools, ultrasonic transducers, water tanks, and liquid circulation according to specific objectives. By utilizing ultrasonic oscillation control probes and ultrasonic testers, we have developed optimization techniques for ultrasonic applications through the examination of various relationships and response characteristics (Note: power contribution rate, impulse response, etc.) based on previous oscillation, measurement, and analysis. Regarding the measurement and analysis of ultrasound, the setting of sampling time and other parameters utilizes original simulation technology. This technology is provided as consulting services for the optimization of ultrasonic systems (cleaning, stirring, processing, etc.).

  • Other analytical equipment
  • others
  • Traceability

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Development technology consulting for control systems based on ultrasonic models.

To stabilize the effects of cavitation, a statistical perspective is essential.

The Ultrasonic System Research Institute is developing an effective "Ultrasonic Oscillation Control System" based on a statistical approach using abstract algebra in relation to the utilization of ultrasound. Regarding the statistical approach, statistical mathematics has both abstract and concrete aspects, and through contact with concrete entities, abstract ideas or methods are developed; this is the characteristic of statistical mathematics. In the research of ultrasound, "a statistical perspective is essential to stabilize the effects of cavitation." About the model: Models are constructed with the aim of effectively advancing understanding, prediction, control, etc., regarding the subject. Constructing an accurate model is difficult, and the examination progresses with representations that appropriately "round off" the complexity of the subject. In that sense, the process of constructing or building a model requires statistical thinking. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Water Treatment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0007kkk.jpg

Analysis of sound pressure measurement of ultrasonic equipment (autocorrelation, bispectrum, etc.)

Application of feedback analysis using multivariate autoregressive models.

Features (in the case of standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 100 MHz * Surface vibration measurement is possible * Continuous measurement for 24 hours is possible * Simultaneous measurement of any two points * Measurement results displayed in graphs * Utilization of original analysis software for time series data This is a measurement system using ultrasonic probes. Measurements are conducted by attaching the ultrasonic probe to the target object. For the measured data, considering position and state along with elastic waves, various acoustic performances are detected. Consulting services are available for sound pressure measurement analysis technology: 1) Operation of measurement equipment 2) Operation of analysis software 3) Evaluation methods for analysis results <Concept of Analysis: Statistical Thinking> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete elements, abstract thoughts or methods are developed, which is the characteristic of statistical mathematics. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1389.jpg

Nonlinear Sweep Oscillation Control Technology for Ultrasonics - Oscillation Waveforms and Control Know-How -

Development technology of original ultrasonic systems - consulting support based on the measurement and analysis of surface acoustic waves, optimizing know-how for low and high harmonics.

The Ultrasonic System Research Institute (located in Hachioji City, Tokyo) has developed a new ultrasonic nonlinear sweep oscillation control technology utilizing the nonlinear vibration phenomenon of surface acoustic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface acoustic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveforms and output balance 6) Oscillation control and resonance phenomena ... Based on sound pressure measurement data, we optimize a new evaluation method for surface acoustic waves using a statistical mathematical model. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Ultrasonic oscillation control technology utilizing ultrasonic propagation conditions above 100 MHz.

Ultrasonic control based on the classification of ultrasonic propagation conditions (measurement, analysis, and evaluation of sound pressure data) technology.

The Ultrasonic System Research Institute has developed manufacturing and utilization technologies for ultrasonic probes that control resonance phenomena and nonlinearity regarding surface elastic waves that propagate to objects above 100 MHz with oscillations below 20 MHz. We manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. The key point is the optimization of the propagation characteristics of surface elastic waves on the surface of ultrasonic elements according to the intended use. To achieve this, we adjust the surface of the ultrasonic probe based on the ultrasonic propagation characteristics through acoustic pressure measurement, analysis, and evaluation (acoustic pressure level, frequency range, nonlinearity, dynamic characteristics, etc.) to match the intended use. Ultrasonic Probe Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment Example: Function Generator By understanding the acoustic characteristics of the target object and installation conditions, we have achieved dynamic control of surface elastic waves (propagation state). We realize propagation states tailored to various purposes.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(9)

Development of megahertz ultrasonic oscillation control technology using ultrasonic cleaners.

Development of megahertz ultrasonic oscillation control technology using ultrasonic cleaners.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Technology for the use of ultrasound probes

Technology for the use of ultrasound probes

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic probe (oscillation type, measurement type, resonance type, nonlinear type) Ver3

Ultrasonic probe (oscillation type, measurement type, resonance type, nonlinear type) Ver3

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation system (20 MHz) using a commercially available function generator.

Ultrasonic oscillation system (20 MHz) using a commercially available function generator.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear control technology in megahertz (ultrasonic system)

Nonlinear control technology in megahertz (ultrasonic system)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System (20 MHz) Catalog

Ultrasonic Oscillation System (20 MHz) Catalog

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Sound Pressure Measurement Analysis System: Ultrasonic Tester (Type NA) Catalog

Ultrasonic Sound Pressure Measurement Analysis System: Ultrasonic Tester (Type NA) Catalog

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Custom-made ultrasonic oscillation control probe Ver3

Custom-made ultrasonic oscillation control probe Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

[Free Materials Available] Introducing Useful Information on Vehicle Detection Sensors!

  • NEW
  • CATALOG

To customers considering the introduction of vehicle detection sensors for parking lot construction, design, or management: Are you facing any challenges with current issues or selecting the right sensors for parking management? Hotron offers free materials that explain how to utilize vehicle detection sensors and the benefits of their introduction! ▽ Here is the lineup of materials ◉ Vehicle Detection Sensor Basic Guide This guide focuses on the challenges and solutions in parking lot operations, introducing the overview of vehicle detection sensors. ◉ Key Points for Introducing Vehicle Detection Sensors This material discusses the benefits of introduction based on installation locations and specific challenges. ◉ Case Studies of Vehicle Detection Sensor Implementation This document presents the challenges before implementation and the results after introduction. For more details, please download from our website and check it out. https://www.hotron.co.jp/download/

Nov 14, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
採用イベント「Kort Valuta Night」11/26開催!

“Kort Valuta Night” Recruitment Event in November — A Chance to Hear Real Voices from Our Team Casually get to know Kort Valuta — several participants have already joined the company after attending!

  • NEW
  • COMPANY

Kort Valuta Inc. (Head Office: Shibuya, Tokyo; CEO: Hideki Shibata) is pleased to announce that we will hold our next recruitment event, “Kort Valuta Night,” on November 26, 2025. This recurring event offers an opportunity for potential candidates to casually learn about our company culture and team atmosphere before applying. By lowering the barrier to entry and providing authentic insights from current employees, the event helps participants gain a more concrete sense of what it’s like to work at Kort Valuta. Since the event’s launch, approximately ten attendees have gone on to join the company in a range of roles — including marketing, customer support, and backend engineering.

Nov 13, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Obligation to Preserve "Issued Documents" under the Electronic Bookkeeping Law | Compliance Blind Spots

  • NEW
  • OTHER

The recognition that "the PDF invoice received from the other party must be stored as electronic data" is widely accepted. However, is that response truly sufficient for perfection? ◆ The "receipt" of electronic transactions includes issuance and delivery The Electronic Bookkeeping Act defines "electronic transactions" as the receipt of electromagnetic records related to transaction information. Breaking down the term "receipt" is key to understanding. - "Receipt": Receiving electronic data such as invoices and receipts from business partners - "Issuance": Issuing and delivering electronic data such as invoices and estimates to business partners When downloading a PDF from your company's accounting system and attaching it to an email, or concluding electronic contracts through a cloud-based invoicing service, both the receiving party and the issuing party (your company) are obligated to store the data. 【Utilizing paperlogic DESKTOP for document management】 - Elimination of manual input - Assurance of reliable searchability - Centralized management of receipt and issuance → paperlogic DESKTOP addresses the challenges of complex metadata management in the storage of these issued documents.

Nov 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Certified as a Health Management Excellent Corporation 2025, Next Bright 1000!

  • NEW
  • COMPANY

We are pleased to announce that Arsystem Co., Ltd. has received the "Health Management Excellent Corporation 2025" and "Next Bright 1000*" certifications under the Health Management Excellent Corporation Certification System promoted by the Ministry of Economy, Trade and Industry and the Japan Health Conference. *Certified corporations that applied for Bright 500, ranking from 501 to 1500. This year, we are also able to receive the new certification "Next Bright 1000," and we feel happy to have taken another step toward realizing our vision of being "the company that values its employees the most on Earth." Moving forward, we will continue to strive to create a "Love Al" environment where each of our valued employees can work healthily and energetically, both physically and mentally.

Nov 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The ZEH official version program has been released!

  • NEW
  • PRODUCT

Recently, the calculation formula for electric floor heating in the "Energy Consumption Performance Calculation Program" has been significantly revised and was officially released in April. With this release, the introduction of electric floor heating in ZEH homes has become possible. For more details on heating conditions, please refer to the attached flyer. "Energy Consumption Performance Calculation Program" can be found here ▸ https://house.app.lowenergy.jp/#/ If you have any other questions or concerns, please feel free to contact our representative.

Nov 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 義務化された熱中症対策に取り組む製造現場、工場、物流倉庫へ 排気熱風なく室温-4.1℃※の冷風を 工事不要で暑さ対策 気化式スポットクーラー ※環境条件…室温35℃/湿度50%/風量「中」
  • 入力の手間から解放、リアルな営業活動を蓄積 直感的に使える営業支援システム DRIVE SFA
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.