イプロス
  • 分類カテゴリから製品を探す

    • 建材
      建材
      35564件
    • 設備
      設備
      56543件
    • 照明・インテリア
      照明・インテリア
      17217件
    • 共通資材
      共通資材
      36926件
    • 土木資材
      土木資材
      9504件
    • 施工・工事・工法
      施工・工事・工法
      27736件
    • 調査・測定・サービス
      調査・測定・サービス
      30275件
    • IT・ソフトウェア
      IT・ソフトウェア
      30052件
    • その他
      その他
      83912件
    • 店舗・施設用品
      店舗・施設用品
      4332件
    • オフィス・業務用品
      オフィス・業務用品
      11325件
    • 病院・福祉施設用品
      病院・福祉施設用品
      944件
    • 物流機器
      物流機器
      7386件
    • エネルギー・資源
      エネルギー・資源
      11439件
  • 業種から企業を探す

    • 情報通信業
      7080
    • その他
      6873
    • 建材・資材・什器メーカー
      6710
    • サービス業
      4486
    • 商社・卸売り
      2977
    • その他建設業
      2447
    • 電気設備工事業
      641
    • インテリアデザイン
      532
    • 設備設計事務所
      493
    • 建設コンサルタント
      468
    • 建築設計事務所
      360
    • 小売
      339
    • 倉庫・運輸関連業
      316
    • ゼネコン・サブコン
      288
    • 電気・ガス・水道業
      282
    • 内装工事業
      276
    • 医療・福祉
      265
    • 教育・研究機関
      258
    • 建物管理
      251
    • リフォーム住宅建設業
      222
    • 給排水工事業
      205
    • 住宅メーカー・工務店
      186
    • 運輸業
      158
    • 不動産・デベロッパー
      153
    • 水産・農林業
      118
    • 構造設計事務所
      65
    • 金融・証券・保険業
      36
    • 飲食店・宿泊業
      30
    • 自営業
      28
    • 鉱業
      25
    • 警察・消防・自衛隊
      19
    • 公益・特殊・独立行政法人
      18
    • 店舗・ビルオーナー
      9
    • 不動産オーナー
      8
    • 官公庁
      8
    • 個人
      7
  • 特集
  • ランキング

    • 製品総合ランキング
    • 企業総合ランキング
製品を探す
  • 分類カテゴリから製品を探す

  • 建材
  • 設備
  • 照明・インテリア
  • 共通資材
  • 土木資材
  • 施工・工事・工法
  • 調査・測定・サービス
  • IT・ソフトウェア
  • その他
  • 店舗・施設用品
  • オフィス・業務用品
  • 病院・福祉施設用品
  • 物流機器
  • エネルギー・資源
企業を探す
  • 業種から企業を探す

  • 情報通信業
  • その他
  • 建材・資材・什器メーカー
  • サービス業
  • 商社・卸売り
  • その他建設業
  • 電気設備工事業
  • インテリアデザイン
  • 設備設計事務所
  • 建設コンサルタント
  • 建築設計事務所
  • 小売
  • 倉庫・運輸関連業
  • ゼネコン・サブコン
  • 電気・ガス・水道業
  • 内装工事業
  • 医療・福祉
  • 教育・研究機関
  • 建物管理
  • リフォーム住宅建設業
  • 給排水工事業
  • 住宅メーカー・工務店
  • 運輸業
  • 不動産・デベロッパー
  • 水産・農林業
  • 構造設計事務所
  • 金融・証券・保険業
  • 飲食店・宿泊業
  • 自営業
  • 鉱業
  • 警察・消防・自衛隊
  • 公益・特殊・独立行政法人
  • 店舗・ビルオーナー
  • 不動産オーナー
  • 官公庁
  • 個人
特集
ランキング
  • 製品総合ランキング
  • 企業総合ランキング
  • プライバシーポリシー
  • 利用規約
  • 会社情報
  • 採用情報
  • 広告掲載
  1. ホーム
  2. その他
  3. マイクロトラック・ベル株式会社
  4. 製品・サービス一覧
その他
  • ブックマークに追加いたしました

    ブックマーク一覧

    ブックマークを削除いたしました

    ブックマーク一覧

    これ以上ブックマークできません

    会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

    無料会員登録

マイクロトラック・ベル株式会社

資本金6580万
従業員数120名
住所大阪府大阪市住之江区南港東8丁目2番52号
電話06-6655-0362
  • 公式サイト
最終更新日:2023/06/12
マイクロトラック・ベル株式会社ロゴ
  • この企業へのお問い合わせ

    Webからお問い合わせ
  • 企業情報
  • 製品・サービス(249)
  • カタログ(93)
  • ニュース(25)
  • カテゴリ

91~135 件を表示 / 全 249 件

表示件数

カテゴリで絞り込む

製品総合カタログ 製品総合カタログ
ウェブセミナー ウェブセミナー
分析依頼 分析依頼
粒子計測ゼミナール 粒子計測ゼミナール
吸着ゼミナール 吸着ゼミナール
ガス吸着の基礎 ガス吸着の基礎
比表面積・細孔分布 比表面積・細孔分布
ガス・蒸気吸着 ガス・蒸気吸着
高圧ガス吸着 高圧ガス吸着
真密度 真密度
触媒評価・破過曲線 触媒評価・破過曲線
水銀ポロシメータ 水銀ポロシメータ
粒子径 ・ 粒度分布(nm~μm~mm) 粒子径 ・ 粒度分布(nm~μm~mm)
粒度分布、スラリー分散性(nm~μm) 粒度分布、スラリー分散性(nm~μm)
粒度分布、粒子形状(動的画像解析) 粒度分布、粒子形状(動的画像解析)
粒度分布、粒子形状(静的画像解析) 粒度分布、粒子形状(静的画像解析)
カーボンニュートラル カーボンニュートラル
用途:機能性材料 用途:機能性材料
用途:粉粒体加工技術 用途:粉粒体加工技術
用途:二次電池・キャパシタ 用途:二次電池・キャパシタ
用途:電子部品 用途:電子部品
用途:化成品 用途:化成品
用途:自動車 用途:自動車
用途:食品 用途:食品
用途:医薬品 用途:医薬品
用途:香粧品・日用品 用途:香粧品・日用品
用途:建築材料 用途:建築材料
用途:製紙 用途:製紙
用途:解媒 用途:解媒
材料評価:粉粒体 材料評価:粉粒体
材料評価:液滴 材料評価:液滴
材料評価:スラリー 材料評価:スラリー
材料評価:多孔体・膜 材料評価:多孔体・膜
粒子径(粒度分布)・形状評価のアプリケーション資料・導入事例 粒子径(粒度分布)・形状評価のアプリケーション資料・導入事例
ガス吸着のアプリケーション資料・導入事例 ガス吸着のアプリケーション資料・導入事例
class="retina-image"

高精度ガス吸着量測定装置『BELSORP MAX G』

デモ/分析受付中 コンパクト、かつローコスト!マイクロ孔から評価可能な専用機 (活性炭・ゼオライト・MOFなど)

『BELSORP MAX G』は、BELSORP MAXシリーズの中で、コンパクト、 かつローコストなガス吸着量測定装置です。 マイクロ孔からメソ・マクロ孔を持った多孔性および無孔性材料評価の ために、極めて低い圧力からガス吸着等温線測定が可能な専用機。 測定ポート、飽和蒸気圧測定専用ポート並びにリファレンスポートが それぞれ1つずつ装備されており、各ポートには専用の圧力センサーが 搭載され、高精度な測定ができます。 【特長】 ■最高水準の再現性でN2、Ar極低圧等温線測定によりマイクロ孔からの  評価可能 ■CO2吸着によるウルトラミクロ孔評価が可能 ■Kr吸着による低比表面積測定 ■H2、CO2、O2、CH4および非腐食性ガス吸着等温線測定および吸着速度測定 ※詳しくはPDF資料をご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

比表面積/細孔分布測定装置『BELSORP MINI X』

デモ/分析受付中 測定時間を大幅短縮・従来製品に比べ測定精度が10倍向上 Heガス不要な比表面積評価 電池材料、セラミックスなど

『BELSORP MINI X』は、各種機能性材料の比表面積・細孔分布、 低温から高温までの各種ガスの吸着等温線測定が可能な製品です。 AFSMによる世界最高水準の再現性とGDOによる測定時間の大幅な短縮が 可能。再現性が非常に高く、従来製品に比べ測定下限が10倍以上向上しました。 4つのサンプル測定ポートを備え、マルチデバイス制御などの ハイスループット機能を搭載しています。 【特長】 ■世界最高水準の再現性で最大4検体同時に短時間測定を実現 ■比表面積測定範囲  ・0.01m2/g以上(N2):全表面積10m2の再現性±0.4% ※詳しくはPDF資料をご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

高精度ガス・蒸気吸着量測定装置『BELSORPシリーズ』カタログ

デモ/分析受付中 比表面積/細孔分布「BELSORP MINI X」高精度ガス/蒸気吸着測定「BELSORP MAXシリーズ」等

当カタログは、各種機能性材料の比表面積・細孔分布・表面特性評価に適した、 高精度ガス・蒸気吸着量測定装置『BELSORPシリーズ』を紹介しています。 最大4検体同時測定が可能な比表面積/細孔分布測定装置「BELSORP MINI X」 をはじめ、高精度ガス吸着量測定装置「BELSORP MAX G」や「BELSORP MAX」 などを掲載。 製品の選定にご活用ください。 【掲載内容(抜粋)】 ■BELSORPシリーズの変遷・基本原理(定容量法)・特長 ■BELSORP MINI X ■BELSORP MAX G ■BELSORP MAX II ■BELSORP MAX ※詳しくはPDF資料をご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】細孔分布グラフの表現方法

面積分布と体積分布の違いを明示し、どのようなアプリケーションで各分布を利用すべきか?

細孔分布を表現する方法にはいくつかの種類があります。 異なる分布を示しますが、すべて正しく物理的な意味があります。 ここでシリンダー型の細孔モデルを仮定。半径がrで長さがLの 細孔があります。 当社のホームページでは、この細孔の側面積と体積を表す式や 細孔分布の縦軸の表現を数学的に解いています。 また、実際にBAM-PM-103基準試料の窒素吸着等温線の吸着側から、 BJH法にて解析した例をグラフで掲載し、詳しくご紹介しています。 ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】吸脱着等温線ヒステリシス

ガス吸着等温線からの細孔分布は、吸着あるいは脱着側の等温線のどちらを使用するべきか!

過去から現在においても、ガス吸着からの細孔分布は、吸着あるいは 脱着側の等温線のどちらを使用するべきかの論議があります。 この吸脱着ヒステリシスは、異なる径の細孔が連結していることによる 段階的な脱着機構(パーコレーション)によるものと考えられており、 脱着側からの細孔分布解析は注意が必要です。 一般的には、吸着側等温線から解析する細孔分布において、問題が少なく 真値に近いといわれています。 当社のホームページでは、図や表を用いて詳しくご紹介しています。 ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】NLDFT/GCMC法

マイクロ孔領域の細孔分布評価の信憑性を向上!NLDFT/GCMC法についてご紹介

「非局在化密度汎関数法」および「コンピューターシミュレーション法」は、 多孔性材料の細孔分布の新しい評価方法として近年発達してきました。 この理論により多くの材料や吸着質の吸着が説明され、マイクロ孔や メソ孔の細孔分布解析に利用されるようになりました。この新しい 細孔分布評価方法は、従来メソ孔とマイクロ孔で使い分けていた理論を、 単一の理論での全領域の細孔分布の解析を可能としました。 また従来、信頼性に欠けていたマイクロ孔領域の細孔分布の精度を向上。 これらの理論の特長は、古典的細孔分布解析理論では細孔内吸着相が 液体状態であると仮定(Kelvin理論)していたものを、固体表面からの 吸着密度の周期的な変化を解析したことです。 当社のホームページでは、図を用いて詳しくご紹介しています。 ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】メソ・マクロ孔解析

粒子解析および粒子解析装置に関する情報!メソ・マクロ孔解析についてご紹介

メソ孔の解析理論としては、BJH、 CI、 DH法(シリンダー型)や Innes法(スリット型)があります。 これらは毛管凝縮理論(ケルビン式)に基づき計算され、一般的に メソ孔(2 nm)以上の細孔径に適用されます。 当社のホームページにて、詳しく紹介しております。さらに、 相対圧と細孔半径の関係を表で掲載しています。ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】マイクロ孔解析

ナノオーダーの吸着分子をプローブとした信頼できるマイクロ孔解析法!

マイクロ孔の解析理論としては、t-plot、 HK、 SF、 DR-plot、 NLDFT、 GCMC法 などがあります。 t-plot、 DR-plotは、細孔容積や内・外部比表面積を算出するのに用いられ、 HK、 SF、 NLDFT、 GCMCは、マイクロ孔分布を算出するのに有効な方法です。 マイクロ孔解析理論は、細孔壁と吸着分子の距離が短いため、平面吸着や メソ孔に対する吸着理論の様に簡単ではありません。細孔形状は、シリンダーや スリット型の細孔と仮定され、細孔壁は原子や吸着質パラメータを選択する 必要があります。 当社のホームページにて詳しく紹介しています。ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】ガス吸着と細孔径の関係

なぜ吸着等温線から細孔分布が求まるのか?ガス吸着と細孔径の関係についてご紹介

細孔内では、ガス分子にはその周りの細孔壁からの引力が働き、 平面より低い圧力で細孔内凝縮が始まります。 この凝縮圧力は細孔径に関係します。 当社のホームページでは、吸着等温線と細孔径の関係を 図や表を用いて詳しくご紹介しています。 ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】細孔分布測定法

「ガス吸着法」や「水銀ポロシメータ」など!細孔分布測定法についてご紹介

粉体や機能性材料の細孔分布の代表的な測定方法としては、 ガス吸着法と水銀ポロシメータがあります。 「ガス吸着法」は、主に低温(液体窒素や液体アルゴン)におけるN2や Arガス吸着等温線から解析され、分子サイズ~数百 nmの細孔径測定が可能。 「水銀ポロシメータ」は、材料に濡れにくい水銀を加圧し、試料に圧入する 量から細孔分布を求める方法です。 また、近年フィルターや分離膜の透過孔のみを測定する方法として、 「ガス透過法」や「バブルポイント法」もあります。 当社のホームページにて詳しく紹介していますので、ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】細孔径の定義

ナノポーラス材料の細孔径の定義についてご紹介

これまで、細孔径は画像の通り定義されていました。 2015年IUPACが改訂され、これまでの細分化をなくし、 NANOPORE(~100 NM)として定義しています。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】KRガスによる微少表面積測定

低比表面積評価にKrが用いられる理由?

Krを用いて低比表面積を測定できるのか? 吸着断面積は、Kr(0.202 nm2)、N2(0.162 nm2)とKr分子のほうが 25%も大きく、低比表面積測定に向いていません。 理由は、吸着温度・蒸気圧にあります。 定容量法においてガス吸着量を計算する場合、導入したガス量と 吸着しなかったガス量の差から計算します。 当社のホームページにて、詳しく紹介しています。ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】マイクロ孔を持つサンプルの比表面積測定

何が問題で、どのようにすればよいか?マイクロ孔を持つサンプルの比表面積測定についてご紹介

BETの論文にはI型の等温線にBET理論は適用してはならないと 書かれています。 しかし、材料評価の上では比表面積は重要なパラメータであり、 マイクロ孔を持つ材料に対して比表面積はよく計算されています。 では何が問題で、どのようにすればよいのでしょうか? 当社のホームページでは、図やグラフを用いてご紹介しています。 ぜひ、ご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】BET理論

単分子層吸着理論を多分子層吸着理論に拡張し得られた!BET比表面積の評価方法を基本からご紹介

比表面積は、通常ガス吸着等温線からBET理論(多分子層吸着理論) により解析されます。 BET理論は、固体表面の強い吸着サイトから吸着が始まり、圧力の 上昇に伴い、その次に強い吸着サイトに吸着していきます。 同時に2層目や3層目吸着が起こることをモデルとしています。 当社のホームページでは、図やグラフを用いてご紹介しています。 ぜひ、ご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】比表面積と粒子径

同じ重さ・実体積を持つサンプルでも異なる表面積を持つ!比表面積と粒子径についてご紹介

粒子が小さくなれば比表面積が増え、当然粒子に細孔があれば 比表面積が増えます。 これはプロセスや反応において重要であり、同じ材料(重量当り、体積当り) でも表面のサイト量や吸着容量が変化することになります。 比表面積を測定することは材料(吸着剤・触媒など)の活性や吸着能力を 知る上で重要なパラメータとなります。 当社のホームページでは、粒子径と表面積の関係などを図でご紹介しています。 ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】到達真空度

極低圧における吸着等温線測定精度が高まり、マイクロ孔解析の信頼性が高まった!

マイクロ孔の解析や表面分析において、超高真空下での吸着等温線測定の 重要性が高くなっています。 現在、ターボ分子ポンプに代表されるように、クリーンな真空を得ることは 技術的に可能ですが、定容量法ガス吸着装置は複数のバルブと配管・ ジョイントを有する為、サンプル部を高真空に到達することは困難です。 図は、電磁弁と空気作動弁の放出ガスの違いを示しています。 当社のホームページにて詳しく紹介していますので、ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】フリースペース測定法

液面を保つ必要が無く、ガス吸着測定中もフリースペース変化を連続測定可能!

フリースペース(死容積)は幾何学的な体積ではなく、吸着量を 計算するための便宜上の体積です。 物理吸着をさせるため、試料管を液体窒素などの冷媒に冷やすと、 2つの温度域ができ、この冷却部分でのガス密度は、冷却する温度および、 測定中の冷媒のレベル変化に影響を受けます。 当社のホームページにて、詳しくご紹介しておりますので、 ぜひご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術
  • その他

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】吸着量測定法

短時間に吸着量を測定でき、材料の品質管理などに良く用いられている方法などをご紹介!

吸着等温線の測定としては定容量法・重量法・パルス吸着法・流動法 などがあり、比表面積・細孔分布を測定する方法としては主に定容量法が 用いられています。 当社のホームページでは、「定容量法」と「パルス吸着法・流動法」について 詳しくご紹介しておます。 ぜひ、ご覧ください。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】吸着等温線

気相よりも高い吸着質密度を測定したもの!吸着等温線についてご紹介

材料を一定温度にし、圧力と吸着量の変化を測定したグラフを 「吸着等温線」と呼びます。 一般的に、横軸を平衡圧力を飽和蒸気圧で割った相対圧(P/P0)とし 0~1の値を取ります。 P/P0?1では吸着ガスは試料管内で凝縮することを意味するため、 吸着等温線は飽和蒸気圧よりも低い圧力で固体と吸着分子の相互作用力が 働き吸着・凝縮が始まり、気相よりも高い吸着質密度を測定したものです。 また、定容量法では一般的に、吸着量をV/ml(STP)g-1と標準状態 (0 oC、1 atm)における気体の体積で表します。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

【技術情報】吸着とは

吸着技術は古くから研究されており、ガス分離など工業プロセスにも応用されています!

今日、吸着技術は気体分離など工業プロセスにも応用されています。 吸着には図に示すような形態があり、不明瞭なのは、化学吸着と 物理吸着の違いです。 一般的にあるガス分子を材料に吸着させ、その吸着温度ないしは室温にて 排気できないような強い結合(水素結合・酸塩基結合)を持つものを 化学吸着と呼びます。 それに対し、物理吸着は吸着力が主にファンデルワールス力によるもので、 真空排気をすることにより脱着が可能です。 現在、物理吸着・化学吸着という表現をやめ可逆吸着・不可逆吸着と 呼ぶことも推奨されています。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他サービス・技術

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

高濃度噴霧液滴(スプレー・ミスト)のレーザ粒子径分布測定

デモ/分析受付中 エアゾル測定、高濃度噴霧のレーザ粒子径分布測定における多重散乱補正方法についての情報を掲載!

当ページでは、高濃度噴霧のレーザ粒子径分布測定における 多重散乱補正方法についての情報を掲載しております。 「第11回微粒化シンポジウム」(2002年12月)での学会発表を 要約したものです。(参考文献:第11回微粒化学会論文集 P174) 詳細内容は、関連リンクより閲覧いただけます。 【掲載内容】 ■概要 ■測定データ ■まとめ ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

マイクロトラック測定結果(要約データ)の記号の意味

測定結果(要約データ)の記号の意味を解説します。よくある質問とその回答もご覧頂けます。

当ページでは、マイクロトラック測定結果(要約データ)の 記号の意味を解説しております。 体積平均径[MV]をはじめ、個数平均径[MN]、面積平均径[MA]や 比表面積(m2/ml)[CS]など、数式や表を使ってご説明。 よくあるご質問を当ページにまとめました。 詳細内容は、関連リンクより閲覧いただけます。 【掲載内容(一部)】 ■[MV] Mean Volume Diameter:体積平均径 ■[MN] Mean Number Diameter:個数平均径 ■[MA] Mean Area Diameter :面積平均径 ■[CS] Calculated Specific Surfaces Area:比表面積(m2/ml) ■[SD] Standard Deviation :標準偏差 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

マイクロトラック粒子径分布測定装置 測定結果の見方を教えて下さい

よくあるご質問、マイクロトラック粒子径分布測定装置の測定結果の見方をご説明!

当ページでは、「マイクロトラック粒子径分布測定装置」の 測定結果の見方をご説明しております。 "ソフトウェアバージョン"から"見出し"、"粒子径分布・グラフ"、 "要約データ"など、なにがどこに記されているか記載。 詳細内容は、関連リンクより閲覧いただけます。 【掲載内容】 ■ソフトウェアバージョン ■見出し ■粒子径分布・グラフ ■要約データ ■累積パーセント径または粒径パーセント(任意設定) ■チャンネル(CH)データ ■測定条件 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

マイクロトラックは複数の試料を混合しても、結果を出せるのはなぜ?

独自の光学系設計、3本レーザ搭載、スリット状の検出器構造

マイクロトラックの検出器の形状は、散乱角度の中心から外に向かって スリット状になっています。 レーザー回折・散乱方式では、粒子へレーザー光を照射し、粒子径情報を 有する散乱光を、ある形状の検出器で検出し粒子径分布を求めますが、 検出器の形状により、その粒子径情報が2乗、3乗、または4乗に比例した 信号となります。 粒子径分布データは、粒子径の3乗に比例した体積ベースで表されますが、 通常みられる検出器では、体積ベースの粒子径分布データを表示するには、 いろいろな補正を加えることとなります。 マイクロトラックのスリット状の検出器では、求める粒子径の3乗に比例した 信号を直接取り出すことができます。 マイクロトラックだけが、サンプルの混合比を正確なデータとしてご提供 できる大きな理由はこの検出器の違いにあるのです。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

マイクロトラックが精度表示をしないのはなぜか?

粉体には絶対尺度がありません。

粉体には絶対尺度がなく、マイクロトラックでは精度表記をしていません。 その理由の一つとして、 一般的に、精度は長さ、圧力、温度、電圧等に 使われ、そこには絶対的な尺度が存在します。 しかし粉体は、サンプルの抽出、製造ごとのロットの差、試料の酸化、 凝集、経年変質、さらに形状因子等から絶対尺度が存在しません。 たとえば、特にラテックスは、環境条件により、経年変化を含め粒子状態が 変化します。 このため、マイクロトラックでは精度表示はしていません。 "NIST"においても精度表示をしていません。 種々尺度に関する値付けにおいて、世界で権威があり、トレーサビリティーの 基となっている機関として"NIST"が挙げられます。 ここにおいても、粉体に関しては精度表示はせず、標準試料の粒子径や 粒子径分布表示は顕微鏡、自然沈降方式などによる試料抽出ごとの 測定結果のバラつきの程度を示す事であらわしています。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

マイクロトラックの試料供給器や周辺機器はなぜ多いのか?

信頼性の高い粒子径分布データを得るためには、特性に合った試料循環器などを選ぶことが重要な要素!

粒子径分布測定においては、代表試料の抽出と均一分散が重要なテーマです。 マイクロトラックの試料循環器、オプションは、湿式では USVR、Sample Delivery Controller(SDC)、LVR、乾式ではライン式、 フィーダ式などラインアップが非常に多いのが特長です。 選定が大変だと思われるお客さまもいらっしゃると思いますが、 各機種には粉体の特性を考慮した工夫がなされています。 その結果、納入実績は豊富です。 粉粒体は、同一の物質でも特性が異なり千差万別です。 このため、信頼性の高い粒子径分布データを得るためには、分析計 本体の性能とともに、粉粒体ごとの特性に合った試料循環器やサンプル コンディショナーを選ぶことが非常に重要な要素となります。 また、多品種の試料測定、自動化、有機溶媒中での分布測定など、 お客さまの用途はさまざまです。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

粒子径測定における屈折率の影響とは?

特に微小粒子径の粒子では、その屈折率により散乱現象は大きく影響があります。

レーザ回折・散乱式粒子径分布測定装置をはじめとする粒子の光散乱の 光量を測定する装置では、分散媒と粒子の屈折率と粒子の径、および 光源波長は重要な因子です。 一例として、粒径パラメータα=πD/λ(D:粒径、λ:光源波長)を 変数にして、屈折率の差による散乱光強度を図に示します。 散乱現象は図に示すように粒子径と屈折率で敏感に変化します。 透光性が少ない大きな粒子径では回折現象が支配的な散乱現象となり、 屈折率の影響は少ないのですが、粒子径が小さな透光性粒子では粒子と 分散媒界面における反射、屈折、粒子内の減光および粒子内面の反射など、 屈折率により変化する様々な現象が大きな影響を持ってきます。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

粒子径測定における個数分布と質量(体積)分布との違いとは?

同一の粒子径分布であっても表記の方法では、分布の形状が大きく異なりますので注意が必要です!

個数分布とは顕微鏡で粒子の大きさを測定した際のイメージです。 つまり粒子の個数と大きさを分布として表記する方法です。 これに対し、質量(体積)分布とはふるいで粒子の大きさを測定した際の イメージです。つまり粒子の大きさを質量の分布として表記する方法です。 またこの粒子を質量で測定するのではなく、大きさ(体積)で測定した際は 体積分布となります。 同一の粒子径分布であっても、表記の方法(個数分布と体積分布)では、 分布の形状が大きく異なりますので注意が必要です。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

粒子径測定における体積平均径[MV]とはどのような粒子径か?

[MV]は体積で重みづけされた平均径!

体積平均径とは、「MV」値のことです。 しかしながら一般的には累積の50%粒子径をもって平均径と呼ばれる 場合があるので注意が必要です。 この累積の50%粒子径は、中央値あるいは中位径と呼ぶべき値です。 以下に粉体の粒子径分布を表す特性値の代表例を示します。 [10%、50%、90%] 10%、50%、90%(μm:マイクロメートル) 一つの粉体の集合を仮定し、その粒子径分布が求められているとします。 その粉体の集団の全体積を100%として累積カーブを求めたとき、その 累積カーブが10%、50%、90%となる点の粒子径をそれぞれ10%径、50%径、 90%径(μm)としています。 特に、50%径は累積中位径(Median径)として一般的に粒子径分布を評価する パラメータの一つとして利用されます。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

粒子径による物理的特性の違いとは?

粉粒体のナノ~センチメートルまで!粒子径の違いによる各種物理的特性

当ページでは、粒子径による物理的特性の違いについて ご紹介しています。 粉粒体のナノ~センチメートルまでの粒子径の違いによる 各種物理的特性を表を使ってご説明。 「粒子観察」、「光の現象」、「粒子の細分化と表面積増加の関係」、 「付着力」、「その他」の項目を比較しております。 詳細内容は、関連リンクより閲覧いただけます。 【項目内容】 ■粒子観察 ■光の現象 ■粒子の細分化と表面積増加の関係 ■付着力 ■その他 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

デモ/分析受付中 水銀ポロシメータ『BELPOREシリーズ』

コンパクト・高い安全性・自動制御!多孔性材料評価の新たなステージ

『BELPOREシリーズ』は、多孔性材料の細孔構造(メソ・マクロ孔)評価に 適した水銀ポロシメータです。 真空から414MPaまでの水銀圧入測定により、1mmから3.6nmの範囲の 多孔性材料の細孔を正確かつ迅速に評価することが可能。 さらに、比表面積、密度および粒子径分布などの評価ができる先端の 機器となっています。 【特長】 ■高真空状態から全自動縦型充填 ■最大20、000点の高精度測定 ■高い安全性 ■コンパクト設計による低スペース化 ※詳しくはPDF資料をご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

動的光散乱(DLS)

粒子径・ゼータ電位測定!懸濁液やエマルション中の微粒子を高精度に測定します

動的光散乱(DLS)は、懸濁液やエマルション中の粒子径分布を評価するための 確立された測定技術です。 粒子径分布(粒度分布)測定技術のパイオニア的存在であるマイクロトラックは、 30年以上にわたって動的光散乱式に基づく光学システムを開発してきました。 動的光散乱式(DLS)は、懸濁液やエマルション中の微粒子を高精度に測定します。 レーザ回折・散乱式では測定が困難な100nm以下の微粒子が測定可能であり、 低濃度から高濃度まで幅広い濃度範囲において高精度測定を実現しています。 【動的光散乱式(DLS) 特長】 ■ブラウン運動(小さな粒子は早く、大きな粒子は遅く動く)に基づく ■約1nmから数μmの粒子径を測定できる ■レーザ回折・散乱式では測定が困難な100nm以下の微粒子が測定可能 ■低濃度から高濃度まで幅広い濃度範囲において高精度測定を実現 ■ゼータ電位、及び、分子量の測定が可能 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

レーザ回折・散乱

nm~μm~mm、幅広い測定範囲をカバーする粒子径分布測定装置です

当社は40年以上にわたるレーザ回折装置のグローバルリーダーです。 装置に関する技術を継続的に改善し、粒子径測定と物性評価に好適な レーザ回折装置の製品群をお客様に提供しています。 粒子径・粒子形状分析装置「SYNC」をはじめ、「MT3000II」や 「AEROTRAC II」などをご用意しております。 【ラインアップ】 ■粒子径・粒子形状分析装置「SYNC」 ■MT3000II ■AEROTRAC II ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

吸収

減光(Extinction)と吸収(Adsorption)

本文では、広義、狭義を区別するために前者を減光(Extinction)、 後者を吸収(Adsorption)と言うことにします。 粒度分析計にとって重要な意味を持つのは、どちらかと言うと減光の方です。 まず、物理現象としての吸収について簡単に説明します。 物質が存在すると 光の伝播は色々な形で影響されます。 それが散乱であり、反射、屈折でもあり、 ここで論じようとしている吸収です。 ではなぜこの吸収が起きるのか? 光は電磁波の一種であることはご存知ですね。 つまりある振動数を持つ振動子があるという事です。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

屈折と反射

スネルの法則

水の中にいる魚を水の上から見て、モリで突こうとして、失敗した経験は ありませんか?水の上から見た時に見える魚の位置と実際にいる位置が ずれているために起こります。 つまり、水の中から来る光がどこかで方向を変えて来るからこのようなことが 起きます。これが屈折です。 この反射の問題は、実は光の散乱を使用した計測器にとって大事な問題です。 使用するセル内面、レンズ表面に対して入射する散乱光の角度を注意して 設計しないと、正確な測定ができないことになります。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

干渉

水面に石を投げ入れた時の波面のモデル

この特性はレーザ回折方式にはあまり大きく関係しません。 干渉はナノトラックの原理を理解する上で重要な現象となります。 干渉の例としては、水面に石を投げ入れた時の波面のモデルです。 もし水面にある距離を離して、石を二つ落とすと、2つの表面波が重なり合う 時に、一方の波の峰(山)ともう1つの波の谷が同時に出会う時は波が弱まり、 山と山が出会うと波が強まることが観察できます。これが干渉です。 最初に出てくるのは「フーリエの定理」と言う数学の定理です。 この定理によれば、ある種の条件さえ満たせば、任意関数は有限個もしくは 無限個の正弦関数の和で表すことができます。 平たく言えば、たいがいの波形は複数個のサインカーブに分解できるということです。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

回折像の強度分布を表す式

開口部スリット幅=球形粒子の直径

今までの展開が、ある開口部に光を当てるという形で回折を論じてきましたが、 我々レーザー回折式粒子径分布測定装置のメーカーにとっては、幸運なことに 開口部の穴ではなく粒子に光を当てても、まったく同一の現象が見られます。 さらにMieの理論は1個の球をべースにしていますが、材質と直径がすべて等しく、 かつ不規則に分布し、間隔が波長に比べて充分に大きいときには、複数個の 球にも適用できます。 計測器メーカにとって都合が良いことに、散乱光量は球の数に比例して 多くなります。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

スリットの幅と回折光強度パターンの関係

光は波のような性質を持ちます

読者の方々は、光が波の性質を持ち、その波長によって色々な光の現象が 変わることは今更説明をする必要はないかと思います。 今、光の波長とこれから論じるスリット径の変化とを整理するために パラメータを導入します。 λ:光の波長、D:スリット径、これは分母、分子のディメンションから わかるように無次元数となります。 αが小さくなると、先に述べたフラウンフォーファの回折の回折強度パターンは、 図の右側に示すような形になり、αが大きくなると左側の形のようになります。 今λを一定と考えるとDの大、小によりできる形が変わるということです。 ここで少し数式の展開をして、読者の眠気を誘い希薄な内容をごまかすことにします。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

フラウンホーファーの回折

平行光を利用した光の干渉

もう一方のフラウンホーファが説明している回折理論、これが実は後述する レーザ回折法の粒子径分布測定装置の基礎理論になっているのです。 フレネルの回折と区別する意味で、非常に大まかな分類ですが、フレネルの 回折 光源と観測点が共に回折が起きる開口部から近い時の回折 フラウンホーファの回折 光源と観測点が共に回折を起こす開口部から無限に 遠い時の回折、ということができます。 このフラウンホーファの回折現象はフレネルの回折と比較して数学的には 簡単に表すことができます。 光学の有識者にとってはカミナリを落とされるような乱暴な展開ですが、 どうしても縞模様ができる理由を知りたい方々には、付録に示す光の参考書類を 読んでいただくことを強くお勧めいたします。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

フレネルの回折

二次の球面波の相互干渉

回折現象を説明した人に、フレネルとフラウンホーフアという二人の 先生がいます。 フレネルは先に示したホイへンスの原理をベースに2次の球面波の相互干渉を 考慮してこの回折を説明していることから、ホイヘンス―フレネルの原理とも 呼ばれています。 「ある時間における波面上の各点は2次の球面波の源となり、2次波の振幅は 1次波、2次波の進行方向の間の傾きの角度が大きくなると共に減少し、 1次波、2次波が同じ方向に向かう時最大となり、逆方向に向かう時に最少となる。 これらの現象は2次の球面波の相互の干渉により発生する。」 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

光の回折

ホイヘンスの原理

光の直進性と波としての性質から、光の挙動について説明した人にかの 有名なホイへンス先生がいます。ホイへンスは次のようなモデルを使用して、 光の直進性を説明しました。 回折現象は皆さまの間近でもよく見受けられます。 例えば、私はあまり早起きでないのでずいぶん見ていませんが、日の出の 太陽が完全に姿をあらわす前から、東の山の稜線が光に縁取られたように 強く光るのを目にすることができます。 これが光の回折です。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

ミーの散乱(Mie scattering)

レーザ回折・散乱式装置の拠り所

G.Mieは1908年に、均一媒質内に存在し、任意な直径を持ち、任意材質の 均一な球による平面単色波の回折を、電磁気学によって取り扱い、厳密な 解を得ることに成功しました。 この散乱現象が私たちに取っては非常に大事な散乱となります。 ミー散乱が重要なのは、私たちが取り扱っている粒子径分布測定装置の 測定範囲のかなりの部分がこれに入っているからです。 しかしこのミーの散乱を数学的に解くには非常に難しい要素があります。 既にこのミーの式をコンピュータで解くプログラムも開発されていますが、 難しい事には変わりなく、この問題をいかにクリヤーするかが 粒子径分布測定装置メーカーのノウハウになります。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

レイリーの散乱(Rayleigh scattering)

レーザ光の波長よりも非常に小さな粒子からの散乱光に適応される理論

レイリーの散乱(Rayleigh scattering)は主には0.05μmなどの波長と比べて 非常に小さい粒子のときに議論されるもので、今回の原理説明集の中で この散乱領域まで測定している例としてはナノトラックがあります。 しかしながら共に根本原理の中に占めるこのレイリー散乱の役割は多少意味が 異なる事から、ここではこのレイリー散乱の簡単な説明にとどめておきます。 レイリー散乱のもっとも一般的な例としては、青い空です。 地球を由り巻く02、N2の分子により、このレイリー散乱が起こり、波長の短い 青い光だけが強められた形になり、空が青く見えるという事です。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

光の散乱

回折・屈折・反射

当社の粒子径分布測定器に関連した光の基礎理論を大きく分けると 「散乱」「回折」「干渉」「屈折と反射」「吸収」があります。 日機装の取り扱っている粒子径分布測定装置は、光の散乱現象を応用して、 散乱光の強度と粒子の大きさとの関係から粒子径分布を測定する装置です。 各々の装置の特長については後で説明する原理の部分にゆずり、ここではまず 一般的な”散乱”という現象について説明します。 光の散乱というと、ある物質に光を当てた時に直進する光以外のすべてのものを 含んでいわれる事があります。 つまり、「回折」「屈折」「反射」の3つの現象の複合した結果となります。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

粒子径分布

粉粒体を適切に評価するためには、平均粒子径だけではなく、粒子径分布が重要です。

粉体、つまり集合体としての粒子の大きさは、多数個の測定結果を大きさ (粒子径)毎の存在比率の分布として表すのが一般的です。 存在比率の基準としては体積基準(体積分布)、個数基準(個数分布)等があります。 マイクロトラック(レーザー回折・散乱法)では原理上体積分布を測定しています。 (粒子の形状を球形と仮定し、ソフトウェアで個数基準などに換算することは 容易です。) 沈降法は質量基準の測定法ですが、測定の過程で試料の密度が必要なため 体積分布も得られます。 動的光散乱法では、信号の相対強度として存在比率が求められるのが 一般的ですが、ナノトラックに限り体積分布が出力可能です。 粒子径分布は頻度として表す場合と、累積分布として表す場合があります。 累積分布には、細かい粒子の側をゼロとして右上がりのカーブとなる オーバーサイズと、粗い側をゼロとして右下がりとなるアンダーサイズがあります。 ※詳しくは関連リンクをご覧いただくか、お気軽にお問い合わせ下さい。

  • その他計測器

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録
前へ 123456 次へ
  • 【イプロス初主催】AIを活用したリアル展示会!出展社募集中

    【イプロス初主催】AIを活用したリアル展示会!出展社募集中

  • この企業へのお問い合わせ

    Webからお問い合わせ

製品

  • 製品を探す

企業

  • 企業を探す

特集

  • 特集

ランキング

  • 製品総合ランキング
  • 企業総合ランキング

サポート

  • サイトマップ
IPROS
  • プライバシーポリシー 情報の外部送信について
  • 利用規約
  • 会社情報
  • 採用情報
  • 広告掲載
COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.