iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35518items
    • Facilities
      Facilities
      56040items
    • Lighting and Interior
      Lighting and Interior
      17347items
    • Common materials
      Common materials
      36683items
    • Civil Engineering Materials
      Civil Engineering Materials
      9545items
    • Construction, work and methods
      Construction, work and methods
      27336items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29202items
    • IT/Software
      IT/Software
      33692items
    • others
      others
      76634items
    • Store and facility supplies
      Store and facility supplies
      4385items
    • Office and commercial supplies
      Office and commercial supplies
      11487items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6772items
    • Energy and Resources
      Energy and Resources
      11674items
  • Search for companies by industry

    • Information and Communications
      7218
    • others
      7033
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4660
    • Trading company/Wholesale
      3001
    • Other construction industries
      2449
    • Electrical equipment construction business
      642
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      466
    • Architectural design office
      359
    • retail
      345
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      278
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      252
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      30
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      7
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Optimization techniques for the resonance phenomenon and nonlinear phenomena of ultrasonic cleaning machines—Analysis of ultrasonic sound pressure data: autocorrelation, bispectrum, power contribution rate, impulse response.
PRODUCT
  • Feb 12, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Feb 12, 2023

Optimization techniques for the resonance phenomenon and nonlinear phenomena of ultrasonic cleaning machines—Analysis of ultrasonic sound pressure data: autocorrelation, bispectrum, power contribution rate, impulse response.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a technology for ultrasonic <dynamic control> that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control) and an abstract algebra model. Note: The control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. Compared to existing control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) related to the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we offer it as consulting services (there is an increasing track record of precision cleaning and stirring at the nano level). Note: Dynamic changes in the propagation state of tanks, transducers, target objects, and tools are measured, analyzed, and evaluated using original technology (ultrasonic testers).
Optimization technology for ultrasonic cleaning machines
Optimization technology for ultrasonic cleaning machines
Optimization technology for ultrasonic cleaning machines
Optimization technology for ultrasonic cleaning machines
  • Inquiry about this news

    Contact Us Online

Related Documents

超音波洗浄機(脱気ファインバブル発生液循環システム).pdf[3443922]

Related product

IMG_2447.jpg

Ultrasonic control technology using two function generators.

New ultrasonic dynamic control technology

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound using two function generators. This technology enables the control of ultrasonic nonlinear phenomena and resonance phenomena through different types of (sweep) oscillation using two different waveforms. By applying this technology, we are developing practical methods to relieve surface residual stress in components and various application technologies, and we provide consulting services. Standard settings: 1) Sweep oscillation control from 3 MHz to 20 MHz 2) Sweep oscillation control from 60 kHz to 13 MHz 3) Ultrasonic dynamic control using a 42 kHz 35W ultrasonic cleaner (realizing dynamic fluctuation-type ultrasonic propagation control) Note: Regarding the surface of the ultrasonic cleaner's tank, surface residual stress relief and uniform treatment are performed using an ultrasonic oscillation control probe and a degassing fine bubble generation liquid circulation device. As a result of the uniformization effect, ultrasonic control using harmonics above 200 MHz has been achieved.

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7308.jpg

Propagation characteristics of ultrasound - vibration modes, nonlinear phenomena, response characteristics, interactions -

Technology for evaluating the dynamic characteristics of original ultrasonic probes—self-correlation, bispectrum, impulse response characteristics, power contribution rate.

Technology for Evaluating the Dynamic Characteristics of Ultrasonic Probes We offer consulting services for this technology. If you are interested, please contact us via email. By utilizing the acoustic properties (surface elastic waves) of various materials (glass containers, etc.), we have confirmed the effects of ultrasonic stimulation on structures, machine tools, and various manufacturing lines, even in a 5000-liter water tank with ultrasonic output below 20W. This was developed as a method for controlling and applying nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave motion and an ultrasonic model from abstract algebra. The key point is the technology for utilizing surface elastic waves on ultrasonic element surfaces. By confirming the propagation characteristics of ultrasound based on the conditions of the target object (material, shape, structure, size, quantity, etc.), it is important to address it as an original nonlinear resonance phenomenon. Note 1: Propagation characteristics of ultrasound Propagation characteristics of ultrasonic probes: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1673.jpg

Analysis of ultrasonic sound pressure measurement data (using the free statistical processing language and environment "R")

Feedback analysis using multivariate autoregressive models for time series data: autocorrelation, power spectrum, bispectrum...

The Ultrasonic System Research Institute has developed a completely new technology for controlling the propagation state of surface elastic waves using its original product (ultrasonic tester). The ultrasonic sound pressure measurement and analysis technology developed so far will apply measurement, analysis, and evaluation techniques related to nonlinear phenomena in ultrasonics. It has become possible to implement new countermeasures based on vibration phenomena concerning vibrations and noise from buildings and roads, equipment, devices, walls, pipes, desks, handrails... as well as the vibrations at the moment of metal melting during welding and instantaneous vibrations during machining. Consulting services are available for this technology. Note: The following tools will be used for analysis Note: OML (Open Market License) Note: TIMSAC (TIMe Series Analysis and Control program) Note: "R," a free statistical processing language and environment autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0431.jpg

Ultrasonic sound pressure measurement analysis (consulting support)

Ultrasound consulting specialized in measurement and analysis of ultrasonic propagation conditions.

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained using ultrasonic testers in chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, drawing on the principles of statistical mathematics. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on good confirmations.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20230607a.jpg

Consulting for a degassed fine bubble generation liquid circulation system.

Control technology for acoustic flow (the main cause of ultrasonic effects: nonlinear phenomena) using ultrasound and fine bubbles.

The Ultrasonic System Research Institute has developed a method (system) for the <analysis and evaluation> of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We provide consulting for a degassing microbubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable state, we conduct consulting to add the degassing microbubble generation liquid circulation system to specific tanks present on-site. 1: Explanation of principles 2: Specific proposals tailored to the cleaning machine (device) 3: Explanation of know-how 4: Explanation of verification methods, adjustment methods, and maintenance methods Development of nonlinear vibration control technology using fine bubbles and megahertz ultrasound Regarding this technology, we provide consulting as "vibration measurement technology utilizing ultrasound." Ultrasound propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
data1.jpg

Machining technology utilizing megahertz ultrasonic vibrations.

Machining technology using ultrasonic systems (sound pressure measurement analysis, oscillation control).

The Ultrasonic System Research Institute has developed "ultrasonic oscillation control (processing) technology" that utilizes the acoustic characteristics (vibration response characteristics and nonlinear phenomena) of objects (tools, target items, etc.) through a sound pressure measurement analysis device (ultrasonic tester) and a megahertz ultrasonic oscillation control probe. With this developed technology, it has become possible to control nonlinear vibration phenomena in target objects through "ultrasonic oscillation and output control," achieving dynamic control of ultrasonic waves (changes in bispectrum). The original ultrasonic oscillation control probe allows for the utilization and control of nonlinear effects of ultrasonic vibrations. This is an effective ultrasonic utilization (control) technology tailored to applications such as processing, cleaning, surface modification, and promoting chemical reactions. There are interactions with the acoustic characteristics of cutting tools (drills, reamers, cutters, knives, etc.) and the size and material of cutting oils, jigs, and target objects, making the analysis (self-correlation, impulse response, contribution rate, bispectrum) complex. However, various optimizations based on the analysis results of sound pressure measurement data become possible.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_3690.jpg

Dynamic liquid circulation system for ultrasonic cleaning machines (consulting available)

Optimization technology for ultrasonic cleaning machines

(Development of a control system based on measurement and analysis of ultrasonic cleaning machines) The Ultrasonic System Research Institute has developed a technology that applies techniques for measuring and analyzing the state of ultrasonic cleaning machines, which propagate through the liquid, to set and control the state of ultrasonic cleaning machines according to specific purposes, taking into account the effects of tank structure, strength, manufacturing conditions, and liquid circulation state. This technology analyzes and evaluates the dynamic characteristics of complex ultrasonic vibrations (Note 1) in relation to various factors, allowing for the setting of cavitation and acceleration effects according to specific objectives through the configuration of circulation pump settings (Note 2). Note 1: This utilizes the original technology of the Ultrasonic System Research Institute, which employs "ultrasonic oscillation control" technology that considers "timbre." Note 2: The know-how involves settings related to the relationships between the cleaning machine, cleaning solution, and air at their respective boundaries. It can also be applied to cleaning tanks that do not have an overflow structure. Regarding the self-organization of micro-flows, control of acoustic flow has been made possible through degassing, aeration, ultrasound, and elastic wave dynamics on the tank surface.

  • pump
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220501b2.jpg

Optimization technology for resonance phenomena and nonlinear phenomena using ultrasound.

- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Technology for Achieving Dynamic Control of Ultrasound

The Ultrasonic System Research Institute has developed a technology for ultrasonic <dynamic control> that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system and an abstract algebra model. Note: The control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. In contrast to existing control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we offer it as consulting services (there is an increasing track record of precision cleaning and stirring at the nano level). Note: Using original technology (ultrasonic tester), we measure, analyze, and evaluate dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9593.jpg

Ultrasonic sound pressure measurement analysis system "Ultrasonic Tester NA"

We will measure, analyze, and evaluate the propagation state of ultrasound using an ultrasonic tester.

Features (for standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 10 MHz * Ultrasonic oscillation Specification: 1 Hz to 100 kHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Attached software for time series data analysis This is a measurement system using an ultrasonic probe. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, detecting various acoustic performances. Ultrasonic Probe: Outline Specifications Measurement range: 0.01 Hz to 10 MHz Oscillation range: 1 kHz to 25 MHz Propagation range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Ultrasonic Propagation Characteristics 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasound oscillation system using original ultrasound probes.

An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). **Technology for Controlling Nonlinear Ultrasonic Vibration Phenomena** 1) Control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator, tailored to the acoustic characteristics of the target object. 2) Manufacturing technology for an ultrasonic oscillation control probe that enables control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for an ultrasonic measurement probe that allows for the measurement of changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasonic waves according to specific objectives. Note: The dynamic control of ultrasonic waves is performed based on the analysis and evaluation of sound pressure data related to nonlinear phenomena, considering the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control. (Sound pressure measurement, analysis, confirmation, and evaluation are conducted using an ultrasonic tester.)

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6802.jpg

Chemical reaction control device using nonlinear phenomenon control of ultrasound.

An experimental system for controlling chemical reactions using megahertz ultrasound.

The Ultrasonic System Research Institute has developed a technology for controlling chemical reactions using ultrasound by utilizing the technology for controlling nonlinear phenomena of ultrasound (acoustic flow). This technology controls ultrasound (cavitation and acoustic flow) tailored to specific purposes through ultrasonic control using a megahertz ultrasonic oscillation probe by measuring and confirming the interactions within the container. Note: Ultrasonic Control By setting the oscillation conditions for sweep oscillation and pulse oscillation using two types of nonlinear resonant ultrasonic oscillation probes, it dynamically controls high-frequency propagation states above 30 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). Note: Ultrasonic Control "Precision Cleaning Example" Sweep Oscillation: 70 kHz – 15 MHz, 15 W Pulse Oscillation: 13 MHz, 8 W Note: Ultrasonic Control "Nano-Level Stirring Example" Sweep Oscillation: 880 kHz – 22 MHz, 12 W Pulse Oscillation: 14 MHz, 10 W In particular, the dynamic characteristics of harmonics through acoustic flow control enable reactions and responses at the nano level.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Case studies of dynamic control of ultrasound based on acoustic pressure measurement analysis.

Regarding sound pressure measurement data, a classification and evaluation technique for ultrasonic propagation states using feedback solutions of time-series data—self-correlation and bispectrum.

The Ultrasonic System Research Institute has been manufacturing and selling measurement and analysis systems for ultrasonic vibrations since April 2012. The system allows for visual confirmation of the nonlinear phenomena of ultrasound (acoustic streaming) and cavitation effects through graphs, considering elastic wave propagation in the analysis of the measured data. To account for the "nonlinear phenomena" in the complex variations of ultrasonic usage conditions, we analyze the autocorrelation and bispectrum using autoregressive models of time series data to evaluate and apply these changes. We have realized numerous new utilization methods according to various purposes. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. - autcor: autocorrelation analysis function - bispec: bispectrum analysis function - mulmar: impulse response analysis function - mulnos: power contribution rate analysis function

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
P0005000.jpg

Ultrasonic cleaning machine utilizing nonlinear phenomena from ultrasound and fine bubbles.

Optimization of cavitation and acoustic flow using a degassed fine bubble generation liquid circulation device.

The Ultrasonic System Research Institute has developed an ultrasonic cleaning machine utilizing microbubbles, based on measurement, analysis, and evaluation techniques related to ultrasonic propagation phenomena, which can also be used for ultrasonic processing, stirring, and chemical reactions. Recommended System Overview 1: Two types of ultrasonic transducers (standard types 38 kHz, 72 kHz) that perform surface modification treatment using ultrasonic waves and microbubbles. 2: An ultrasonic dedicated tank (standard type, inner dimensions: 500*310*340mm) that performs surface modification treatment using ultrasonic waves and microbubbles. 3: A degassing and microbubble generation liquid circulation system. 4: An optimization control system for ultrasonic output and liquid circulation via a control device. 5: An acoustic pressure management system using an ultrasonic tester. *Features This is an effective device utilizing an ultrasonic dedicated tank. Due to the efficient use of ultrasonic waves, the strength and durability of a standard tank are insufficient. Depending on the target and purpose of cleaning, stirring, and surface modification, two types of ultrasonic transducers are combined and controlled. The recommended combination is in the state of 38 kHz and 72 kHz. Technology for stably utilizing fine bubbles of 20 μm or less.

  • pump
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(12)

Ultrasonic control technology using two function generators.

Ultrasonic control technology using two function generators.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Classification of cavitation and acoustic flow based on sound pressure measurement analysis.

Classification of cavitation and acoustic flow based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic propagation characteristic test

Ultrasonic propagation characteristic test

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound system (sound pressure measurement analysis, oscillation control)

Ultrasound system (sound pressure measurement analysis, oscillation control)

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

About the Propagation Phenomenon of Ultrasound - No. 2

About the Propagation Phenomenon of Ultrasound - No. 2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound Technology (R Language) - Procedure for Analyzing Ultrasound Sound Pressure Measurement Data -

Ultrasound Technology (R Language) - Procedure for Analyzing Ultrasound Sound Pressure Measurement Data -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Tester (SSP) Analysis Guide

Ultrasonic Tester (SSP) Analysis Guide

MANUAL
  • E-book viewing
  • Catalog download

Contact this catalog

Plating method using ultrasound and fine bubbles

Plating method using ultrasound and fine bubbles

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

An experimental study on ultrasonic control using acoustic flow control with a small pump in a flowing water system.

An experimental study on ultrasonic control using acoustic flow control with a small pump in a flowing water system.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

The essence of ultrasonic cleaning (acoustic flow as a nonlinear phenomenon)

The essence of ultrasonic cleaning (acoustic flow as a nonlinear phenomenon)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Nonlinear resonance-type ultrasonic oscillation probe

Nonlinear resonance-type ultrasonic oscillation probe

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

採用イベント「Kort Valuta Night」11/26開催!

“Kort Valuta Night” Recruitment Event in November — A Chance to Hear Real Voices from Our Team Casually get to know Kort Valuta — several participants have already joined the company after attending!

  • NEW
  • COMPANY

Kort Valuta Inc. (Head Office: Shibuya, Tokyo; CEO: Hideki Shibata) is pleased to announce that we will hold our next recruitment event, “Kort Valuta Night,” on November 26, 2025. This recurring event offers an opportunity for potential candidates to casually learn about our company culture and team atmosphere before applying. By lowering the barrier to entry and providing authentic insights from current employees, the event helps participants gain a more concrete sense of what it’s like to work at Kort Valuta. Since the event’s launch, approximately ten attendees have gone on to join the company in a range of roles — including marketing, customer support, and backend engineering.

Nov 13, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
デジタル社員証「TwooCa」アプリのUIデザインをリニューアル ~ナビゲーション機能強化とレイアウト最適化で操作性を向上~

TwooCa App — Digital Employee ID — Undergoes UI Redesign ~ Improved usability through enhanced navigation and optimized layout ~

  • NEW
  • PRODUCT

Kort Valuta Inc. (Headquarters: Shibuya-ku, Tokyo; President & CEO: Hideki Shibata; hereinafter “the Company”) announces that it has renewed the user interface (UI) of TwooCa, the Company’s digital employee ID with Visa payment functionality.

Nov 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
株式会社NBSロジソル、全従業員約1,100名を対象に「TwooCa」を導入 ~働きやすさと理念実践を両立する次世代基盤~

NBS Logisol Co., Ltd. Implements “TwooCa” for Approximately 1,100 Employees Visualizing Appreciation, Health, and Challenge — Building a Next-Generation Platform that Enhances Both Work Comfort and Corporate Philosophy Practice

  • NEW
  • COMPANY

Kort Valuta Inc. (Headquarters: Shibuya-ku, Tokyo; CEO: Hideki Shibata) is pleased to announcethat NBS Logisol Co., Ltd. (Headquarters: Hita City, Oita Prefecture; CEO: Itsuro Kono) has introduced “TwooCa,”a Visa-enabled digital employee ID card, for approximately 1,100 employees.

Nov 12, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

An article about the lightweight resin formwork system 'PERI DUO' has been published in the 'Construction News' (November 7, 2025)!

  • NEW
  • OTHER

An article about the resin-based lightweight formwork system "PERI DUO" has been published in the "Construction News" (November 7, 2025)! "PERI DUO" is a new system formwork made of resin that can be used for walls. It is made from a newly developed material called "Politec," which is high-strength and lightweight. With fewer components, it is easy to handle. It allows for increased reuse and is an environmentally friendly lightweight formwork that is flexible on the construction site! 【DUO Product Features】 ■ New system formwork made of resin ■ High strength and lightweight ■ Fewer components and easy to handle ■ 100% recyclable *For more details about this product, please feel free to contact us. PERI Japan Co., Ltd.

Nov 11, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The "Kuji Regional Renewable Energy Circulation Project" in Kuji City, Iwate Prefecture, has received an excellence award at the 2025 Solar Week Awards from the Solar Power Association.

  • NEW
  • OTHER

We are pleased to announce that the "Kuji Regional Renewable Energy Circulation Project" in Kuji City, Iwate Prefecture, has received an Excellence Award at the 2025 Solar Week Awards organized by the Japan Photovoltaic Energy Association. The "Solar Week Awards" recognize initiatives and projects that contribute to the community, are desired by the community, and serve as models for the expansion of solar power generation. On July 24, 2025, NGK Insulators, Ltd. issued a press release titled "Start of Operation of Solar Power Generation Equipment at Hybrid Storage Facility with Sharing Function - Ceremony Held at Solar Power Plant Operated by Iwate Bank Group Company." This demonstration of the hybrid storage facility with sharing function (StorageHub) is being conducted by manorda Iwate, a regional trading company fully funded by Iwate Bank, with development led by NR-Power Lab Co., Ltd. NR-Power Lab Co., Ltd. is leading the design, development, and system operation of the StorageHub in this project. We will continue to collaborate with our partner companies to engage in technological development and the creation of advanced services aimed at realizing a sustainable local community.

Nov 11, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 12/14までに無料掲載を申し込むだけ 抽選で20名様にAmazonギフトカード5,000円分プレゼント!
  • 義務化された熱中症対策に取り組む製造現場、工場、物流倉庫へ 排気熱風なく室温-4.1℃※の冷風を 工事不要で暑さ対策 気化式スポットクーラー ※環境条件…室温35℃/湿度50%/風量「中」
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.