Construction method Product List and Ranking from 1597 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Oct 29, 2025~Nov 25, 2025
This ranking is based on the number of page views on our site.

Construction method Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Oct 29, 2025~Nov 25, 2025
This ranking is based on the number of page views on our site.

  1. Taiyo Kisokogyo Co.,Ltd. Aichi//General contractors and subcontractors
  2. 水研 Shiga//Building materials, supplies and fixtures manufacturers
  3. null/null
  4. 4 三晃金属工業 Tokyo//General contractors and subcontractors
  5. 5 日本海洋サービス 大阪支店 Osaka//Building materials, supplies and fixtures manufacturers

Construction method Product ranking

Last Updated: Aggregation Period:Oct 29, 2025~Nov 25, 2025
This ranking is based on the number of page views on our site.

  1. Install the valve without stopping the water! 'EM Continuous Water Valve Method' 水研
  2. Hybrid Concrete Reinforcement Method "Solid Remain Alpha"
  3. Support for bridge pier reinforcement nationwide: "Temporary Closure LPF Method" 日本海洋サービス 大阪支店
  4. 4 Gradient Construction Method for Residential Exterior Walls "KF Gradient Method" KFケミカル
  5. 5 Reinforcement of existing beam after hole cutting: "Redouble Method" コンステック

Construction method Product List

2896~2910 item / All 4235 items

Displayed results

Vibration Control WIB Method

Eliminate vibration issues and create a comfortable living environment! Here are some examples of our achievements in vibration control.

Various vibrations from road traffic, railways, factories, and construction work exist around us. These vibrations are often perceived as unpleasant and can negatively impact daily life. The "Vibration Countermeasure WIB Method" addresses these vibration issues and creates a comfortable living environment. Additionally, the installation location and shape can be selected according to each property. 【Summary of Achievements (Partial)】 ■ Vibration Source: Road traffic vibration ■ Installation Location: Directly beneath the vibration source ■ WIB Method Type: Plate-type WIB Method (Honeycomb cell type) ■ Issue: Vibrations from large vehicles passing on the road propagate to nearby residences, leading to vibration complaints ■ Response: Road improvement work was carried out, and a honeycomb cell-type plate WIB Method was installed directly beneath the road *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Liquefaction countermeasure WIB method

Reduction of seismic forces and prevention of liquefaction! Constraining the soil inside the cell to suppress ground deformation and reduce seismic motion.

The "Liquefaction Countermeasure WIB Method" protects buildings from damage caused by earthquakes and liquefaction. The basic structure consists of replacement soil that acts as a seismic isolation layer, ground improvement piles that function as a damping layer, and support ground improvement piles that support the building foundation. The ground improvement piles in the damping layer are constructed in a cellular form, creating a strong and stable composite ground (non-liquefaction layer). Additionally, by increasing resistance through the combination of pile foundations and the WIB method, it is possible to reduce the number of piles or lower the grade of the piles, thereby rationalizing the design and contributing to cost reduction. 【Features】 ■ Ground improvement piles in the damping layer are constructed in a cellular form ■ Creates a strong and stable composite ground (non-liquefaction layer) ■ During an earthquake, the cellular ground improvement piles restrain the soil inside the cells ■ Suppresses ground distortion and reduces seismic motion ■ Since liquefaction does not occur inside the cells, it blocks the propagation of liquefied mud water below, preventing surface liquefaction *For more details, please refer to the PDF materials or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Different subsidence countermeasures

The safety of the building has improved! Strengthening the ground serves as a foothold for suppressing differential settlement.

Differential settlement refers to the uneven application of the building's load on the ground, causing the building to tilt. When differential settlement occurs, it can lead to various issues in daily life, such as doors and windows not closing properly and health problems. By constructing a WIB structure within the ground, the rigidity of the WIB structure distributes the load into the ground, resulting in a structural form that increases the bearing capacity against the building load beyond the strength of the original ground at ultimate bearing capacity. Since the WIB structure is built with a planar spread, it can be designed to evenly distribute the loads from buildings and other structures. As a result, it can suppress differential settlement of the ground and improve the safety of the building. 【Features】 ■ Strengthening the ground serves as a foothold for suppressing differential settlement. ■ Designed to evenly distribute the loads from buildings and other structures. ■ Can suppress differential settlement of the ground and improve building safety. *For more details, please refer to the PDF materials or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Control Measures for Factories with Vibration-Generating Equipment

A design that avoids interference with other buried objects! A case of vibration mitigation measures implemented directly under the factory.

At a certain company located in the Kinki region, there were concerns about the impact of vibrations from the internal roads on the new manufacturing plant being established. Since vibration-sensitive equipment is scheduled to operate within the factory, a quiet environment is required. Therefore, the "WIB method" was adopted as a vibration countermeasure, and a design was developed specifically targeting micro-vibrations. After the countermeasures were implemented, the perceived vibrations were reduced to 1/7 to 1/5 of the previous levels. The transmission of vibrations to the manufacturing plant was mitigated, creating an environment where the vibration-sensitive equipment could operate normally. 【Case Summary】 ■ Location: Kinki ■ Client: Certain Company ■ Vibration Source: Vibrations from the internal factory roads ■ Preservation Target: Newly established manufacturing plant ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Precision Machinery Factory

Measures implemented directly beneath the factory and parking space! Introducing a case that achieved vibration reduction goals.

The construction site for a factory handling precision equipment in Kyoto Prefecture faces a road, raising concerns about the impact of vibrations from road traffic on operations and equipment within the factory. To improve the road traffic vibrations at the factory site to a vibration environment suitable for the normal operation of precision equipment, measures targeting micro-vibrations were implemented. Vibration tolerance limits (VC ranks) were set according to the types of precision equipment to be installed in the factory, and performance design was carried out to reduce vibrations in the dominant frequency range to target values. After the measures were implemented, vibrations within the factory were reduced to 1/4 to 1/3, achieving the vibration reduction goals. 【Case Overview】 ■ Location: Kyoto Prefecture ■ Client: Tsumiya Metal Co., Ltd. ■ Contractor: Yu Architectural Design Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Precision machinery factory ■ Countermeasure: Plate-type WIB (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Measures Against Machine Vibration in Manufacturing Plants

Improvement of the working environment! Introduction of a construction case where tire shred made of high-damping material was filled in the cell.

At Mitsui Sumitomo Construction in Ehime Prefecture, vibrations caused by machinery operation within the manufacturing plant were propagating to the adjacent office building (a four-story steel structure), resulting in significant vertical vibrations accompanied by a rumbling phenomenon on the 3rd and 4th floors, necessitating environmental improvements. As a countermeasure, a passage for transport vehicles was constructed between the manufacturing plant and the office building, and the 'WIB method' was implemented directly beneath it. Vibration measurements taken before and after the countermeasures showed a reduction of 10 dB on the 1st floor, while the rumbling phenomenon was eliminated on the 3rd and 4th floors, resulting in a reduction of 15 to 17 dB. Additionally, the vibration level, which had exceeded 70 dB before the countermeasures, dropped to below 60 dB afterward, improving the working environment. 【Case Summary】 ■ Location: Ehime Prefecture ■ Client: Mitsui Sumitomo Construction ■ Vibration Source: Factory vibrations ■ Target for Preservation: Adjacent office building ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Installation Position: Vibration propagation route *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Control Measures for Medical Facilities

Filling tire shred with high damping material between the underground vibration barrier and the improved column row! A case where the working environment has been improved.

At SEIHA located in Chiba Prefecture, vibrations from trains passing near medical facilities were interfering with operations involving precision equipment inside the medical rooms. In response, a 'WIB method' was implemented between the railway and the medical facility. Utilizing existing underground vibration isolation walls, a composite WIB design combining wall-shaped and slab-shaped structures was developed. Based on the micro-vibration tolerance curve for precision equipment, target vibration reduction amounts and target reduction frequency bands were established. After the measures were taken, vibrations in the target reduction frequency band were reduced to less than half, improving the operational environment. 【Case Summary】 ■ Location: Chiba Prefecture ■ Client: SEIHA Co., Ltd. ■ Vibration Source: Railway vibrations ■ Preservation Target: Precision equipment in medical facilities ■ Countermeasure Work: Wall-shaped WIB + Slab-shaped WIB ■ Installation Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Control Measures for the Construction of a New Expressway (1)

Measures were implemented between the construction area and the residential area! It was confirmed that ground vibrations are approximately 6dB lower, reducing vibrations by half!

In Mie Prefecture, there were concerns that construction vibrations from the new highway would propagate to nearby residences. To address this, the 'WIB method' was implemented between the construction area and the homes. After the measures were taken, a running test with a backhoe was conducted, comparing vibrations at the untreated and treated locations. As a result, it was confirmed that the ground vibrations at the treated location were approximately 6dB lower than those at the untreated location, effectively reducing the vibrations by half. 【Case Overview】 ■ Location: Mie Prefecture ■ Client: Tenox Co., Ltd. ■ Vibration Source: Construction work vibrations ■ Protected Target: One nearby residence ■ Countermeasure: Wall-type WIB method (screen type) ■ Installation Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Traffic Vibration Mitigation for Newly Constructed Roads

Confirmed a reduction of more than 10dB, reducing vibrations to less than one-third! Measures were implemented directly beneath the road!

In Yamanashi Prefecture, with the establishment of new embankment roads, it became necessary to preserve the environment of residential areas along the route after the road opened. Therefore, the "WIB method" was implemented directly beneath the road. A running test using a backhoe was conducted before and after the measures (before road construction). As a result, a reduction of more than 10 dB in both horizontal and vertical directions was confirmed near the public-private boundary, and vibrations were reduced to less than one-third. 【Case Summary】 ■ Construction Location: Yamanashi Prefecture ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several residential buildings along the road ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Residential Areas Along National Highways

Vibration measurements were conducted before and after the measures were implemented! A reduction of 4 to 5 dB in the vertical direction was confirmed!

In Saitama City, Saitama Prefecture, traffic vibrations from the national highway were affecting the living environment along the route, leading to complaints from residents. As a countermeasure, tire shred made of high-damping material was filled within a grid. Renovation work was carried out on the side road that runs between the national highway and the residential area, and the 'WIB method' was implemented directly beneath the road. After conducting vibration measurements before and after the countermeasures, a reduction of 4 to 5 dB in vertical direction was confirmed near the boundary between public and private land. 【Case Summary】 ■ Construction Location: Saitama Prefecture ■ Client: Saitama City ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several residential buildings along the national highway ■ Countermeasure Work: Wall-type WIB method (grid type) ■ Construction Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Vibration Mitigation Measures for the Construction of New Expressways (2)

Compared to areas without measures, the ground vibration in areas with measures is about 6dB to 7dB lower! Vibration reduced to less than half!

In Mie Prefecture, there were concerns that the construction vibrations from the new highway would propagate to nearby public facilities. Therefore, the 'WIB method' was implemented directly beneath the construction vehicle road. After the measures were taken, running tests and impact tests using a backhoe were conducted, and the vibrations at the untreated and treated locations were compared. As a result, it was confirmed that the ground vibrations at the treated locations were approximately 6dB to 7dB lower than those at the untreated locations, reducing the vibrations to less than half. 【Case Overview】 ■ Location: Mie Prefecture ■ Client: Tenox Co., Ltd. ■ Vibration Source: Construction work vibrations ■ Preservation Target: Nearby public facilities ■ Countermeasure Work: Plate-type WIB method (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Traffic Vibration Mitigation for Existing Roads

Conducted driving tests with a 10-ton truck before and after the measures! We were able to achieve vibration reduction effects!

In Shizuoka Prefecture, vibration countermeasures were required for sections where complaints about vibrations had been occurring during road renovation work. As a result, the 'WIB method' was implemented directly beneath the road. Before and after the countermeasures, a driving test was conducted using a 10-ton truck. Vibration responses were measured and compared at the boundary between public and private properties along the route, on the ground within the site, and on the second floor of buildings. It was found that vibrations around the dominant frequency of 6Hz were reduced, achieving an average reduction of 10dB in the horizontal direction and 20dB in the vertical direction. [Case Summary] ■ Construction Location: Shizuoka Prefecture ■ Client: Imamura-gumi Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several houses along the road ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (2)

Traffic vibrations transmitted from the ground have been reduced! An environment that falls below regulatory standards has been created after the measures were implemented!

In the model house along the main road in Chiba Prefecture, there were concerns about the impact of traffic vibrations on the living environment due to the proximity of a heavily trafficked main road after the model house was newly constructed. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction level of 12dB (about 1/4 of the original vibration). This model house is planned along a heavily trafficked main road due to its appealing characteristics, but thanks to this construction, the traffic vibrations transmitted from the ground have been reduced, creating an expected quiet indoor environment suitable for the model house. [Case Overview] ■ Construction Location: Chiba Prefecture ■ Client: Tokyo Sekisui Heim Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the main road ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (1)

Maintenance-free and semi-permanent! It creates a comfortable indoor environment without vibration transmission!

At the model house along the road in Tokyo, large vehicles pass by approximately every five minutes during the day, raising concerns about the impact of traffic vibrations on the living environment. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction level of 10-12 dB (about 1/4 to 1/3 of the original vibration). This installation is maintenance-free and semi-permanent, ensuring that even after the model house becomes a regular residence, a comfortable indoor environment free from vibrations will be maintained. 【Case Summary】 ■ Location: Tokyo ■ Client: Mitsui Home Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the road ■ Countermeasure: Plate-type WIB (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[WIB Construction Method Case Study] Railway Vibration Mitigation for Residential Buildings Along Subway Lines

Support beams were also installed! We were able to keep the vibration level below 50dB!

In Tokyo, residential buildings are located close to railways that run underground, raising concerns about the impact of railway vibrations on the living environment after the construction of new homes. To address this, the 'WIB method' was implemented directly beneath the residences. Since building support was necessary, support piles were also installed. Vibration measurements were conducted before and after the implementation of the countermeasures, resulting in a reduction of vibrations by 12 to 17 dB (from 1/7 to 1/4), successfully keeping the vibration levels below 50 dB. 【Case Summary】 ■ Location: Tokyo ■ Client: Project owner ■ Vibration source: Railway vibrations ■ Preservation target: Residential buildings along the railway (underground) ■ Countermeasure method: Plate-type WIB (honeycomb cell type) ■ Installation position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration