List of Other measuring instruments products

  • classification:Other measuring instruments

1081~1125 item / All 10705 items

Displayed results

Relaxation and homogenization treatment of surface residual stress using ultrasound and microbubbles!!

  • others
  • pump
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7194b.jpg

Nonlinear Oscillation Control Technology for Ultrasonic Probes Based on Sound Pressure Measurement Analysis - Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena -

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by optimizing various interactions through the oscillation control of two types of ultrasonic probes from two oscillation channels of a function generator. Note: Nonlinear (resonance) phenomenon The resonance phenomenon that occurs due to the generation of harmonics resulting from original oscillation control, leading to high amplitude ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the control of dynamic changes in surface elastic waves according to their intended use. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz (confirmed by sound pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function generator

Control system using ultrasonic oscillation probe and receiving probe.

  • Other measuring instruments
  • others
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1467.jpg

Technology for Adding Megahertz Ultrasound to Ultrasonic Cleaners — Nonlinear Oscillation Control Technology Using Original Ultrasonic Probes —

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 200 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic probe for vibration measurement: Outline specifications - Measurement range: 0.01 Hz to 100 MHz - Oscillation range: 1 kHz to 25 MHz - Propagation range: 1 kHz to over 900 MHz - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Measurement equipment: Example - Oscilloscope - Oscillation equipment: Example - Function generator

Ultrasonic plating treatment technology using fine bubbles and megahertz ultrasonic waves.

  • others
  • Other measuring instruments
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Development of optimization and evaluation technology related to water tanks, ultrasonic waves, and liquid circulation - Optimization technology for resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance phenomena and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. In contrast to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic ultrasonic propagation states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, response characteristics, etc.)

A combination of "Ultrasonic Tester NA," which allows for easy measurement and analysis of ultrasound, and "Ultrasonic Oscillation System," which enables easy control of ultrasonic oscillation.

  • others
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6756.jpg

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to control the nonlinear vibration phenomena of surface elastic waves through oscillation control techniques based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. The key point is the optimization of the ultrasonic propagation section (Note). Note: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Setting technology for oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the vibration modes of devices and equipment. 2) Setting of sweep conditions corresponding to the vibration modes of devices and equipment. 3) Setting of output levels corresponding to the vibration modes of devices and equipment. To achieve this, it is important to evaluate the characteristics related to ultrasonic propagation conditions through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation). 2) Detection of nonlinear phenomena (changes in bispectrum). 3) Detection of response characteristics (impulse response). 4) Detection of interactions (power contribution rate).

Development technology of original ultrasonic systems - consulting support based on the measurement and analysis of surface acoustic waves, optimizing know-how for low and high harmonics.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231225la.png

Technology Utilizing the Interaction of Ultrasonic Oscillation Control Probes — Interaction Model of Ultrasound —

Dynamic control technology based on ultrasonic sound pressure measurement analysis The Ultrasonic System Research Institute has developed the following technologies: * Ultrasonic oscillation control technology (original product: ultrasonic oscillation control probe) * Measurement technology for ultrasonic propagation conditions (original product: ultrasonic tester) * Analysis technology for ultrasonic propagation conditions (nonlinear analysis system for time-series data) * Optimization technology for ultrasonic propagation conditions (optimization processing of sound and ultrasound) * Development and manufacturing technology for ultrasonic oscillation probes and propagation tools * Technology to control surface acoustic waves of systems By applying the above technologies, we have developed techniques to confirm and utilize the interaction of ultrasonic probes. This technology is based on measurement analysis of propagation conditions through oscillation control of ultrasound. As application examples of the developed technology, we have achieved effective utilization of ultrasound tailored to the conditions of various parts and materials (in air, underwater, in contact with elastic bodies, etc.) for purposes such as cleaning, surface modification, stirring, promoting chemical reactions, and vibration control in various systems.

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231225la.png

Technology Utilizing the Interaction of Ultrasonic Oscillation Control Probes — Interaction Model of Ultrasound —

Dynamic control technology based on ultrasonic sound pressure measurement analysis The Ultrasonic System Research Institute has developed the following technologies: * Ultrasonic oscillation control technology (original product: ultrasonic oscillation control probe) * Measurement technology for ultrasonic propagation conditions (original product: ultrasonic tester) * Analysis technology for ultrasonic propagation conditions (nonlinear analysis system for time-series data) * Optimization technology for ultrasonic propagation conditions (optimization processing of sound and ultrasound) * Development and manufacturing technology for ultrasonic oscillation probes and propagation tools * Technology to control surface acoustic waves of systems By applying the above technologies, we have developed techniques to confirm and utilize the interaction of ultrasonic probes. This technology is based on measurement analysis of propagation conditions through oscillation control of ultrasound. As application examples of the developed technology, we have achieved effective utilization of ultrasound tailored to the conditions of various parts and materials (in air, underwater, in contact with elastic bodies, etc.) for purposes such as cleaning, surface modification, stirring, promoting chemical reactions, and vibration control in various systems.

Let's take this opportunity to learn ultrasonic cleaning, which enables the removal of complex shapes and fine dirt, from scratch!

  • Other measuring instruments
  • others
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629a.png

Technical documentation on ultrasonic sound pressure measurement.

<<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we will analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasonic waves) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation will be analyzed and evaluated in terms of the response characteristics of ultrasonic vibration phenomena concerning the surface condition of the target object through impulse response characteristics and autocorrelation analysis. 3) The interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) will be evaluated through the analysis of power contribution rates. 4) Regarding the use of ultrasonic waves (cleaning, processing, stirring, etc.), we will analyze and evaluate the dynamic characteristics of ultrasonic waves based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasonic waves propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on previous experience and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data. The following tool will be used for the analysis: "R," a free statistical processing language and environment.

Application of sweep oscillation control technology to control nonlinear phenomena of ultrasound.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Development of optimization and evaluation technology related to water tanks, ultrasonic waves, and liquid circulation - Optimization technology for resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance phenomena and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. In contrast to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic ultrasonic propagation states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, response characteristics, etc.)

We will measure, analyze, and evaluate the propagation state of ultrasound using an ultrasonic tester.

  • others
  • Other measuring instruments
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1467.jpg

Technology for Adding Megahertz Ultrasound to Ultrasonic Cleaners — Nonlinear Oscillation Control Technology Using Original Ultrasonic Probes —

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 200 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic probe for vibration measurement: Outline specifications - Measurement range: 0.01 Hz to 100 MHz - Oscillation range: 1 kHz to 25 MHz - Propagation range: 1 kHz to over 900 MHz - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Measurement equipment: Example - Oscilloscope - Oscillation equipment: Example - Function generator

A megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation conditions from 1 to 900 MHz.

  • pump
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220712bss.jpg

Original Ultrasonic Probe ver2 - Application of Surface Residual Stress Relaxation and Uniformity Treatment Technology through Nonlinear Oscillation Control of Ultrasound -

The Ultrasonic System Research Institute has developed a new "Ultrasonic <Oscillation/Control> System" utilizing the "oscillation/control" technology of its original product: ultrasonic probes, for applications such as component inspection, precision cleaning, nano-dispersion, and chemical reaction experiments. This is an application technology using original ultrasonic probes tailored to specific purposes. By measuring, analyzing, and evaluating ultrasonic sound pressure data, this system enables effective oscillation and control of ultrasonic waves. In particular, by combining multiple oscillation and control methods, it can control ultrasonic stimulation for high sound pressure levels and high frequencies due to nonlinear phenomena. It proposes new utilization methods of ultrasonic vibrations for inspecting the connection state and surface of components, as well as for precision cleaning and surface treatment of very small parts. The ultrasonic probes are "custom-made" based on the confirmed usage purposes. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (analysis confirmation of sound pressure data)

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

  • others
  • Other measuring instruments
  • Water Treatment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7342.jpg

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)

The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7342.jpg

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)

The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.

We provide consulting services for the development methods of ultrasonic propagation tools tailored to various usage purposes. --Application of sound pressure measurement and analysis technology--

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2078e.jpg

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.

To stabilize the effects of cavitation, a statistical perspective is essential.

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Development of ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics.

We are evaluating the characteristics of ultrasonic equipment according to the purpose of use. <<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation are analyzed and evaluated in relation to the surface condition of the target object through impulse response characteristics and autocorrelation analysis as response characteristics of the ultrasonic vibration phenomenon. 3) We evaluate the interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on past experiences and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data using ultrasonic measurement data.

Combination technology of function generator and ultrasonic probe

  • Other measuring instruments
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0241.jpg

A new surface inspection technology using megahertz ultrasonic oscillation—ultrasonic probes utilizing components with iron plating on polyimide film.

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology through the development of ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibrations, utilized in surface inspection of substrate components and pre-evaluation of precision cleaning parts, leveraging the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to the propagation phenomena of surface elastic waves, we have enabled effective use tailored to the purpose (evaluation) through the construction and modification of logical models.

Sound flow control technology

  • Non-destructive testing
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0241.jpg

A new surface inspection technology using megahertz ultrasonic oscillation—ultrasonic probes utilizing components with iron plating on polyimide film.

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology through the development of ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibrations, utilized in surface inspection of substrate components and pre-evaluation of precision cleaning parts, leveraging the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to the propagation phenomena of surface elastic waves, we have enabled effective use tailored to the purpose (evaluation) through the construction and modification of logical models.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

  • Other measuring instruments
  • Non-destructive testing
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Development of ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics.

We are evaluating the characteristics of ultrasonic equipment according to the purpose of use. <<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation are analyzed and evaluated in relation to the surface condition of the target object through impulse response characteristics and autocorrelation analysis as response characteristics of the ultrasonic vibration phenomenon. 3) We evaluate the interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on past experiences and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data using ultrasonic measurement data.

【Sample available for loan!】 A unique magnetic switch different from reed switches and Hall elements. Designed for long life and maintenance-free.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Detection of continuous disconnection due to failure and poor disconnection drop based on alarm conditions (R relay) and disconnector drop conditions.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A VAM with an integrated AGT modem connected directly to the steady-state monitoring system.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

One device, three functions! Capable of low voltage detection for DC power and AC power in level crossing equipment boxes and signal equipment rooms.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Detects issues such as one-sided train non-detection and equipment failures! Enhances the safety of level crossings.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

This is a corrosion-resistant, explosion-proof digital display integrated pressure sensor that uses a PVD pressure port and features a ceramic diaphragm.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Comprehensive solution for battery testing! We gather testing technologies and refine manufacturing skills.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

High-precision digital manometer! Proven results for inspection and research and development.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Hydraulic, refrigerant, and oxygen gas compatible. This is a pressure sensor that can be offered at a low price.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Compact size and low cost. Active in semiconductor manufacturing lines, etc. Capacitive type.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The pressure range can also provide products that have passed the Japan Meteorological Agency certification! It is a digital barometer with the highest accuracy.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Low-cost pressure sensor with excellent corrosion resistance ceramic diaphragm.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

On-site lab-level analysis! An astonishingly simple measurement workflow.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Featuring high-speed infrared imaging microscopes and tribology evaluation testing machines!

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Provided in the campaign system configuration! Information on multi-packages that include multiple items.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Measure various peel strengths with adhesive tapes and adhesives! The measurement speed can be switched between six levels, allowing for measurements that partially comply with JIS/ISO standards.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Achieving seamless wireless data transfer in water.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

You can easily distinguish between the N pole and S pole of a magnet. It is suitable for school science projects. LEDs corresponding to each of the N pole and S pole will light up.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

We are introducing examples of installations, systems, and the principles of leak detection!

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Introducing the leak detection sensor cable! It detects the presence of conductive liquids at all points.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Introducing sensor cables for fuel oil! Their sturdy construction allows for use in harsh environments.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Introducing the leak detection sensor cable! It can be easily connected by screwing the connectors together.

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

One device is sufficient for clean rooms, indoor environments, work environments, atmosphere, and exposure experiments!

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Changes to business obligations starting December 2023! Notice to general companies that have appointed safety driving managers!

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

It's a box that allows you to easily connect a monitor!

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Filter

classification
Delivery Time
Location