List of Investigation, testing and inspection products

  • classification:Investigation, testing and inspection

631~675 item / All 5661 items

Displayed results

Clear visibility with transparent glass! Recommended for store and building entrances.

  • Disaster prevention fittings
  • Entrance/Exterior Doors

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Analysis of sound pressure measurement data (autocorrelation, power spectrum, bispectrum, power contribution rate, impulse response, etc.) evaluation and technology.

  • Scientific Calculation and Simulation Software
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7194b.jpg

Nonlinear Oscillation Control Technology for Ultrasonic Probes Based on Sound Pressure Measurement Analysis - Optimization Techniques for Resonance Phenomena and Nonlinear Phenomena -

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by optimizing various interactions through the oscillation control of two types of ultrasonic probes from two oscillation channels of a function generator. Note: Nonlinear (resonance) phenomenon The resonance phenomenon that occurs due to the generation of harmonics resulting from original oscillation control, leading to high amplitude ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the control of dynamic changes in surface elastic waves according to their intended use. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz (confirmed by sound pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function generator

Technology for controlling megahertz sweep oscillation using a technique for adjusting the piezoelectric elements of original ultrasonic probes.

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_8361.jpg

Ultrasonic Nonlinear Oscillation Control Technology Using a Portable Ultrasonic Cleaner (50kHz 50W)

The Ultrasonic System Research Institute has developed a new acoustic flow control technology utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveforms and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

Development technology for dynamic control systems using ultrasound.

  • Water Treatment
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6802.jpg

Control technology for chemical reactions through the control of nonlinear phenomena in ultrasound — Optimization technology for cavitation and acoustic flow —

The Ultrasonic System Research Institute has developed a technology to utilize (control) "nonlinear phenomena related to the generation of harmonics in ultrasound" by analyzing ultrasonic sound pressure measurement data (bispectral analysis, etc.) according to specific objectives. With this technology, when using multiple ultrasonic transducers with different frequencies, it becomes possible to set (manage) the propagation state of ultrasound influenced by harmonics. Therefore, it is possible to achieve appropriate or effective combinations of frequencies. This is very effective as it allows for the detection and confirmation of effective propagation states for cleaning, surface modification, and the promotion of chemical reactions. Furthermore, by combining the control of standing waves with the control of liquid circulation, dynamic control becomes possible to change the effects of cavitation and acceleration (acoustic flow) according to specific objectives. Through original measurement and analysis technology for ultrasonic propagation states, we have confirmed numerous effective cases related to the surface conditions of various components, including cleaning, stirring, surface modification, and chemical reactions.

A technology for measuring, analyzing, and evaluating the propagation state of ultrasound, applied using feedback analysis techniques based on multivariate autoregressive models.

  • Scientific Calculation and Simulation Software
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240827-0004ab.jpg

Ultrasonic sound pressure data analysis and evaluation technology (Leading to new ultrasonic applications from ultrasonic sound pressure and vibration data)

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained from ultrasonic testers chronologically, we establish and verify new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are very effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.

- Nonlinear control system of megahertz ultrasound using an original ultrasonic oscillation control probe -

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_9169.jpg

Control technology for acoustic flow (nonlinear phenomena) using a portable ultrasonic cleaner.

Ultrasonic Oscillation Control Technology Using Portable Ultrasonic Cleaners and Ultrasonic Probes The Ultrasonic System Research Institute has developed a technology to control "nonlinear phenomena of ultrasound (acoustic flow)" through the combination of portable ultrasonic cleaners and ultrasonic probes for megahertz oscillation control. This technology controls the dynamic characteristics of ultrasound (cavitation and acoustic flow) based on the analysis of changing ultrasonic sound pressure data (nonlinear). Tailored to the structure, material, and acoustic properties of specific objects, it measures and confirms the interactions between ultrasound, the object, the water tank, fixtures, and cleaning solutions to establish optimal oscillation conditions for the ultrasonic probe that suit the intended purpose. Note: Oscillation waveform, oscillation output, control conditions, etc. (e.g., square wave, duty 47%, 13V, sweep oscillation, 3-18 MHz...) Through original measurement and analysis technology for ultrasonic propagation states, we provide consulting services for the evaluation of acoustic flow and a wealth of know-how.

Ultrasonic plating treatment technology using fine bubbles and megahertz ultrasonic waves.

  • others
  • Other measuring instruments
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Development of optimization and evaluation technology related to water tanks, ultrasonic waves, and liquid circulation - Optimization technology for resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance phenomena and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. In contrast to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic ultrasonic propagation states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, response characteristics, etc.)

A technology has been developed to control the nonlinear phenomena of ultrasonic vibrations propagating to the target object based on classification techniques of ultrasonic waves and oscillation cont...

  • others
  • Other analytical equipment
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231205a.jpg

Dynamic control technology of ultrasound applied using Shannon's juggling theorem.

The Ultrasonic System Research Institute has developed a "Dynamic Control Method for Megahertz Ultrasound" by applying Shannon's Juggling Theorem. << Application of Shannon's Juggling Theorem >> (F + F2 + ...) * H = (V + V2 + ...) * N F: The oscillation ratio of the base ultrasonic 1 F2: The oscillation ratio of the base ultrasonic 2 F3: The oscillation ratio of the base ultrasonic 3 H: Basic time (maximum control cycle time) (H = MAX(oscillation cycle of ultrasonic 1, oscillation cycle of ultrasonic 2, ...)) V: Megahertz oscillation cycle time by ultrasonic probe 1 V2: Megahertz oscillation cycle time by ultrasonic probe 2 V3: Megahertz oscillation cycle time by ultrasonic probe 3 V4: Megahertz oscillation cycle time by ultrasonic probe 4 (In the case of pulse oscillation, cycle time = 1) N: Adjustment parameters for harmonics 7, 11, 13, 17, 23, 43, 47, ... The key point (know-how) is to control the occurrence state of nonlinear phenomena based on the measurement, analysis, and evaluation of sound pressure data.

A combination of "Ultrasonic Tester NA," which allows for easy measurement and analysis of ultrasound, and "Ultrasonic Oscillation System," which enables easy control of ultrasonic oscillation.

  • others
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6756.jpg

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to control the nonlinear vibration phenomena of surface elastic waves through oscillation control techniques based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. The key point is the optimization of the ultrasonic propagation section (Note). Note: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Setting technology for oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the vibration modes of devices and equipment. 2) Setting of sweep conditions corresponding to the vibration modes of devices and equipment. 3) Setting of output levels corresponding to the vibration modes of devices and equipment. To achieve this, it is important to evaluate the characteristics related to ultrasonic propagation conditions through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation). 2) Detection of nonlinear phenomena (changes in bispectrum). 3) Detection of response characteristics (impulse response). 4) Detection of interactions (power contribution rate).

Application of a new surface inspection technology using megahertz ultrasonic oscillation.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6756.jpg

Sweep oscillation control technology using an ultrasonic probe for controlling resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute is applying and developing manufacturing technology for original ultrasonic probes. We have developed technology to control the nonlinear vibration phenomena of surface elastic waves through oscillation control techniques based on the acoustic characteristics of the probes, and we provide consulting services for various ultrasonic utilization technologies. The key point is the optimization of the ultrasonic propagation section (Note). Note: By relaxing and homogenizing surface residual stress, stable ultrasonic oscillation control becomes possible. Setting technology for oscillation control conditions: 1) Setting of oscillation waveforms corresponding to the vibration modes of devices and equipment. 2) Setting of sweep conditions corresponding to the vibration modes of devices and equipment. 3) Setting of output levels corresponding to the vibration modes of devices and equipment. To achieve this, it is important to evaluate the characteristics related to ultrasonic propagation conditions through operational verification of the ultrasonic propagation characteristics of the original probe (sound pressure level, frequency range, nonlinearity, dynamic characteristics, etc.). Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation). 2) Detection of nonlinear phenomena (changes in bispectrum). 3) Detection of response characteristics (impulse response). 4) Detection of interactions (power contribution rate).

Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

  • Special Construction Method
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Technology for manufacturing megahertz ultrasonic oscillation control probes - Consulting support for manufacturing know-how -

The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 700 MHz, tailored to specific applications. Ultrasonic Probe: General Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 1.0 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 700 MHz - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, and glass, we can achieve desired propagation states in terms of sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (such as glass containers), ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W. It was developed as an application method for nonlinear phenomena through an engineering perspective on elastic waves and an abstract algebraic ultrasonic model.

Development technology of original ultrasonic systems - consulting support based on the measurement and analysis of surface acoustic waves, optimizing know-how for low and high harmonics.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231225la.png

Technology Utilizing the Interaction of Ultrasonic Oscillation Control Probes — Interaction Model of Ultrasound —

Dynamic control technology based on ultrasonic sound pressure measurement analysis The Ultrasonic System Research Institute has developed the following technologies: * Ultrasonic oscillation control technology (original product: ultrasonic oscillation control probe) * Measurement technology for ultrasonic propagation conditions (original product: ultrasonic tester) * Analysis technology for ultrasonic propagation conditions (nonlinear analysis system for time-series data) * Optimization technology for ultrasonic propagation conditions (optimization processing of sound and ultrasound) * Development and manufacturing technology for ultrasonic oscillation probes and propagation tools * Technology to control surface acoustic waves of systems By applying the above technologies, we have developed techniques to confirm and utilize the interaction of ultrasonic probes. This technology is based on measurement analysis of propagation conditions through oscillation control of ultrasound. As application examples of the developed technology, we have achieved effective utilization of ultrasound tailored to the conditions of various parts and materials (in air, underwater, in contact with elastic bodies, etc.) for purposes such as cleaning, surface modification, stirring, promoting chemical reactions, and vibration control in various systems.

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20231225la.png

Technology Utilizing the Interaction of Ultrasonic Oscillation Control Probes — Interaction Model of Ultrasound —

Dynamic control technology based on ultrasonic sound pressure measurement analysis The Ultrasonic System Research Institute has developed the following technologies: * Ultrasonic oscillation control technology (original product: ultrasonic oscillation control probe) * Measurement technology for ultrasonic propagation conditions (original product: ultrasonic tester) * Analysis technology for ultrasonic propagation conditions (nonlinear analysis system for time-series data) * Optimization technology for ultrasonic propagation conditions (optimization processing of sound and ultrasound) * Development and manufacturing technology for ultrasonic oscillation probes and propagation tools * Technology to control surface acoustic waves of systems By applying the above technologies, we have developed techniques to confirm and utilize the interaction of ultrasonic probes. This technology is based on measurement analysis of propagation conditions through oscillation control of ultrasound. As application examples of the developed technology, we have achieved effective utilization of ultrasound tailored to the conditions of various parts and materials (in air, underwater, in contact with elastic bodies, etc.) for purposes such as cleaning, surface modification, stirring, promoting chemical reactions, and vibration control in various systems.

Development of ultrasonic control technology utilizing a combination of sound and ultrasound — oscillation control technology based on sound pressure measurement and analysis evaluation.

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • Scientific Calculation and Simulation Software

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasonic Oscillation Control System (Catalog)

--- Nonlinear Oscillation Control Device Using Megahertz Ultrasonic Waves --- The Ultrasonic System Research Institute manufactures and sells an "Ultrasonic Oscillation System" that allows for easy control of megahertz ultrasonic oscillation. Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 0.5 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass... Oscillation Equipment Examples: Function Generators 1) JDS6600-60M (60 MHz 2ch 266 MSa/s) 2) DG1022Z (25 MHz 2ch 200 MSa/s) 3) FY3224S (24 MHz 2ch 250 MSa/s) 4) MHS-5200A (25 MHz 2ch 200 MSa/s) Recommended Settings ch1 Square Wave 47.1% (duty) 8.0 MHz Output 13.4 V ch2 Square Wave 43.7% (duty) 11.0 MHz Output 13.7 V Sweep Oscillation Conditions Square Wave 3.5 MHz to 15 MHz, 2 seconds

Technology for optimizing the resonance and nonlinear phenomena of ultrasonic vibrations through megahertz oscillation control of an original ultrasonic oscillation control probe.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_6712.jpg

A technology for controlling two types of ultrasonic probes from a single oscillation channel.

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by utilizing the interactions generated by simultaneously oscillating two types of ultrasonic probes from one oscillation channel of a function generator. Note: Nonlinear (resonance) phenomena refer to the resonance phenomenon of ultrasonic vibrations that occurs when harmonics generated by original oscillation control are realized at high amplitudes due to resonance. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic changes of surface elastic waves to be controlled according to their intended use. Practically, the use of multiple (two types of) ultrasonic probes for multiple (two types of) oscillations (sweep oscillation, pulse oscillation) generates complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure at high frequency propagation states, or low frequency propagation states with high sound pressure levels tailored to the desired natural frequency.

Development technology of original ultrasonic systems - technology to control nonlinear phenomena of ultrasound -

  • Vibration and Sound Level Meter
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_4337.jpg

Development of an ultrasonic oscillation control system (60MHz 2ch 266MSa/s).

The Ultrasonic System Research Institute has developed the "Ultrasonic Oscillation Control System 2024," which allows for easy control of megahertz ultrasonic oscillation in combination with a new function generator. System Overview: Ultrasonic Oscillation System (60MHz 2ch 266MSa/s) Contents: - Two ultrasonic oscillation probes - One set of function generator (60MHz Cleqee 60MHz DDS signal generator 266MSa/s) - One set of operation manual (USB memory) Function Generator: - Sine wave: 60MHz - Square wave, triangle wave: 0-25MHz - Pulse & arbitrary & TTL digital wave: 0-6MHz - Pulse width adjustment range: 25nS-4000S - Rise time of square wave: 15nS - Minimum frequency resolution: 0.01uHz (0.00000001Hz) - Frequency accuracy: ±20ppm - Frequency stability: ±1ppm / 3h Ultrasonic Probe: Outline Specifications - Measurement range: 0.01Hz to 200MHz - Oscillation range: 0.5kHz to 25MHz - Propagation range: 0.5kHz to over 750MHz (confirmed evaluation through analysis)

- Technology for controlling oscillations of low-frequency resonance phenomena and high-frequency nonlinear phenomena -

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240827-0004ab.jpg

Ultrasonic sound pressure data analysis and evaluation technology (Leading to new ultrasonic applications from ultrasonic sound pressure and vibration data)

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained from ultrasonic testers chronologically, we establish and verify new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are very effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.

Application of sweep oscillation control technology to control nonlinear phenomena of ultrasound.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20240629bbc.png

Development of optimization and evaluation technology related to water tanks, ultrasonic waves, and liquid circulation - Optimization technology for resonance phenomena and nonlinear phenomena.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance phenomena and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. In contrast to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve dynamic ultrasonic propagation states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as consulting services (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: The original technology product (ultrasonic sound pressure measurement analysis system) measures, analyzes, and evaluates dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, response characteristics, etc.)

We will measure, analyze, and evaluate the propagation state of ultrasound using an ultrasonic tester.

  • others
  • Other measuring instruments
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1467.jpg

Technology for Adding Megahertz Ultrasound to Ultrasonic Cleaners — Nonlinear Oscillation Control Technology Using Original Ultrasonic Probes —

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 200 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic probe for vibration measurement: Outline specifications - Measurement range: 0.01 Hz to 100 MHz - Oscillation range: 1 kHz to 25 MHz - Propagation range: 1 kHz to over 900 MHz - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Measurement equipment: Example - Oscilloscope - Oscillation equipment: Example - Function generator

Leading to new applications of ultrasound from sound pressure and vibration data of ultrasound.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7342.jpg

Vibration control technology using megahertz ultrasound (control, improvement, and adjustment of vibration modes)

The Ultrasonic System Research Institute has developed a completely new technology for controlling vibrations using original products (ultrasonic systems). Based on the analysis and evaluation of ultrasonic sound pressure measurement and oscillation control technology developed so far, we perform oscillation control of megahertz ultrasonic waves based on the analysis and evaluation of nonlinear phenomena in ultrasonics. From the accumulation of data measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves propagating on surfaces, we apply technology that can <measure, analyze, and evaluate> vibration states from low frequencies (0.1 Hz) to high frequencies (over 900 MHz). Regarding vibrations and noise from buildings and roads, equipment, devices, walls, piping, desks, handrails... the vibrations at the moment of metal melting during welding, instantaneous vibrations during machining, and the complex vibration states of entire manufacturing devices and systems... new countermeasures based on vibration measurement and analysis have become possible. This is a new method and technology, and various application cases have developed from the results obtained so far. In particular, since continuous data collection for a standard measurement time of 72 hours is possible, we can measure and respond to very low frequency vibrations and irregularly fluctuating vibrations.

Technology for controlling nonlinear phenomena of ultrasound (acoustic flow)

  • Scientific Calculation and Simulation Software
  • others
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2078e.jpg

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.

Combination technology of function generator and ultrasonic probe

  • Other measuring instruments
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0241.jpg

A new surface inspection technology using megahertz ultrasonic oscillation—ultrasonic probes utilizing components with iron plating on polyimide film.

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology through the development of ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibrations, utilized in surface inspection of substrate components and pre-evaluation of precision cleaning parts, leveraging the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to the propagation phenomena of surface elastic waves, we have enabled effective use tailored to the purpose (evaluation) through the construction and modification of logical models.

Ultrasonic control based on the classification of ultrasonic propagation conditions (measurement, analysis, and evaluation of sound pressure data) technology.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_2078e.jpg

Ultrasonic Control Technology Using Glass Containers - Application Technology of the Ultrasonic System Research Institute Based on Ultrasonic Measurement and Analysis Techniques -

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control probe based on the acoustic properties of glass containers. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) depending on the shape and material of each container, it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the suitable state of ultrasound for the purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Characteristics of fluctuations - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties and surface elastic waves of the target object, referencing the ideas of statistical mathematics, we have developed a new technology regarding the relationships of various detailed effects related to vibration phenomena. The specific conditions for oscillation control are determined based on experimental confirmation, as they are also influenced by the characteristics of ultrasonic probes and oscillation equipment. As a result, there are increasing examples and achievements demonstrating that the new nonlinear parameters are very effective.

It is a technology that enables ultrasonic control tailored to specific purposes.

  • others
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1467.jpg

Technology for Adding Megahertz Ultrasound to Ultrasonic Cleaners — Nonlinear Oscillation Control Technology Using Original Ultrasonic Probes —

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the use of ultrasonic propagation states above 200 MHz with oscillation below 20 MHz by utilizing a function generator and an original ultrasonic oscillation probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled with an ultrasonic output of less than 20W, even in a 5000-liter water tank. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. Ultrasonic probe for vibration measurement: Outline specifications - Measurement range: 0.01 Hz to 100 MHz - Oscillation range: 1 kHz to 25 MHz - Propagation range: 1 kHz to over 900 MHz - Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. - Measurement equipment: Example - Oscilloscope - Oscillation equipment: Example - Function generator

Sound flow control technology

  • Non-destructive testing
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0241.jpg

A new surface inspection technology using megahertz ultrasonic oscillation—ultrasonic probes utilizing components with iron plating on polyimide film.

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology through the development of ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibrations, utilized in surface inspection of substrate components and pre-evaluation of precision cleaning parts, leveraging the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to the propagation phenomena of surface elastic waves, we have enabled effective use tailored to the purpose (evaluation) through the construction and modification of logical models.

Development of an ultrasonic probe utilizing the acoustic properties of Teflon rods (with iron cores).

  • pump
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20221209-0040all-3000b.jpg

Developed optimization and evaluation technology related to water tanks, ultrasound, and liquid circulation.

The Ultrasonic System Research Institute has developed a technology to optimize ultrasonic propagation systems that can control resonance and nonlinear phenomena based on various analysis results of ultrasonic propagation states using an original ultrasonic system (sound pressure measurement analysis and oscillation control). Furthermore, we have advanced the above technology and developed optimization and evaluation techniques related to water tanks, ultrasonic waves, and liquid circulation. Compared to previous control technologies, this technology utilizes new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools, to achieve a dynamic propagation state of ultrasonic waves tailored to specific applications (cleaning, stirring, processing, etc.). This is a method and technology that can be applied immediately, and we offer it as a consulting service (with increasing achievements in ultrasonic processing, precision cleaning at the nano level, stirring, etc.). Note: Parameters include: Power spectrum, autocorrelation, bispectrum, power contribution ratio, impulse response characteristics, and others. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

  • Other measuring instruments
  • Non-destructive testing
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20241103u3.jpg

Development of ultrasonic sound pressure data analysis and evaluation technology considering interaction and response characteristics.

We are evaluating the characteristics of ultrasonic equipment according to the purpose of use. <<Analysis and Evaluation of Ultrasonic Sound Pressure Data>> 1) Regarding time series data, we analyze and evaluate the statistical properties of the measurement data (stability and changes of ultrasound) through feedback analysis using a multivariate autoregressive model. 2) The effects of the oscillation part due to ultrasonic oscillation are analyzed and evaluated in relation to the surface condition of the target object through impulse response characteristics and autocorrelation analysis as response characteristics of the ultrasonic vibration phenomenon. 3) We evaluate the interaction between the oscillation and the target object (cleaning items, cleaning solutions, water tanks, etc.) through the analysis of power contribution rates. 4) Regarding the use of ultrasound (cleaning, processing, stirring, etc.), we analyze and evaluate the dynamic characteristics of ultrasound based on the nonlinear phenomena (results of bispectral analysis) of the target object (propagation of surface elastic waves) or the ultrasound propagating in the target liquid, which are the main factors of the ultrasonic effect. This analysis method is realized based on past experiences and achievements by adapting the dynamic characteristics of complex ultrasonic vibrations to the analysis methods of time series data using ultrasonic measurement data.

Detailed mapping in a short time! We also offer services such as sediment sampling surveys.

  • Geological Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

We will detect the welded parts using eddy currents. Since it is based on eddy currents, detection is possible even if surface finishing, mirror finishing, painting, or plating has been applied.

  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

It is a completely non-contact magnetic linear encoder that is resistant to dirt and difficult to malfunction.

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Durability testing is the key to trust! Corrosion evaluation analysis and testing services.

  • Environmental Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

In addition to general mass analysis, spectroscopic analysis, and separation analysis, we also conduct radioactivity analysis!

  • Environmental Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

We will objectively make our customers' "safety and security" visible.

  • Environmental Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

We have created a beginner's guide for customers using the Natural Disaster Prevention System ZEROSAI for the first time.

  • Weather Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
toppu.png

The "Natural Disaster Prevention System ZEROSAI" has created its first guide for civil engineering, construction, and weather measures.

We have created a beginner's guide for customers using the Natural Disaster Prevention System ZEROSAI for the first time. This guide covers everything from sharing login information and basic screen navigation to features that are often overlooked, such as the convenient weather forecaster consultation service. Feel free to download and make use of it. The table of contents is as follows: - Let's bookmark the login screen - Let's take a look at the forecast screen - Example of use: Let's catch signs of sudden heavy rain - Example of use: Crane operations - Let's check wind speed and make work decisions - Example of use: Let's ask the weather forecaster - Let's set up email notifications *For more details, please download the catalog or feel free to contact us.

Quantifying battery outgassing in real time! Easily adaptable to new application fields.

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[JASIS2021 Exhibition] LUMOS II - Approaching the diffraction limit of light! High spatial resolution ATR mapping measurement

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Providing a new analysis method based on high-speed imaging and machine learning!

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Dual-use specifications! It can be directly connected to the MPA II equipped with a liquid transmission sample chamber!

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The best tool for life sciences and medicine, especially for tissue analysis.

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Analysis items such as moisture, protein, ash, and gluten content can be measured in just a few seconds!

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

One packaging for ion chromatography functions! An analyzer that allows anyone to easily measure sugars.

  • Measurement and Analysis Equipment
  • Analysis and prediction system
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Wire stripping machine, recycling-related equipment, electric wire recycling processing machine, waste wire processing machine, waste wire stripping machine.

  • Environmental Survey
  • lift

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
シスメット営業資料_202406_v1.png

The leaflet for the disaster prevention system for the construction industry, ZEROSAI (NETIS registration number QS-150021-VE), has been updated.

Thank you for your continued support. The leaflet for our Natural Disaster Prevention System ZEROSAI (NETIS registration number QS-150021-VE), which has received many inquiries, has been updated. We can now convey the options and features unique to ZEROSAI in a clearer manner. *For more details, please visit our website or feel free to contact us.* Product Features The Natural Disaster Prevention System ZEROSAI (NETIS registration number QS-150021-VE) centrally manages pinpoint weather information and forecasts in the cloud at construction sites and factories, allowing everyone, including workers, to share information by linking it with electronic display boards and rotating lights. It also includes features such as typhoon path predictions, information on linear precipitation zones, and notifications for special heatstroke alerts, enabling comprehensive coverage of weather-related information with ZEROSAI.

Introducing the torque sensor. It is a rotary torque sensor. It is an amplifier-integrated torque sensor. The output is ±5V.

  • Analysis and prediction system

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Have you considered the chemical substance emissions taking into account the impact on ecosystems?

  • Environmental Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Currently publishing materials featuring three typical case studies on environmental impact assessment and reduction of chemical substances!

  • Environmental Survey

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Filter

classification
Delivery Time
Location