iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35541items
    • Facilities
      Facilities
      56656items
    • Lighting and Interior
      Lighting and Interior
      17273items
    • Common materials
      Common materials
      37004items
    • Civil Engineering Materials
      Civil Engineering Materials
      9533items
    • Construction, work and methods
      Construction, work and methods
      27655items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      30352items
    • IT/Software
      IT/Software
      31783items
    • others
      others
      84501items
    • Store and facility supplies
      Store and facility supplies
      4358items
    • Office and commercial supplies
      Office and commercial supplies
      11462items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      952items
    • Logistics Equipment
      Logistics Equipment
      7378items
    • Energy and Resources
      Energy and Resources
      11605items
  • Search for companies by industry

    • Information and Communications
      7197
    • others
      6978
    • Building materials, supplies and fixtures manufacturers
      6683
    • Service Industry
      4607
    • Trading company/Wholesale
      2996
    • Other construction industries
      2456
    • Electrical equipment construction business
      642
    • Interior Design
      528
    • Facility Design Office
      492
    • Construction Consultant
      464
    • Architectural design office
      361
    • retail
      345
    • Warehousing and transport related industries
      321
    • Electricity, Gas and Water Industry
      290
    • General contractors and subcontractors
      288
    • Interior construction business
      274
    • Medical and Welfare
      272
    • Educational and Research Institutions
      258
    • Building Management
      253
    • Renovation and home construction industry
      224
    • Water supply and drainage construction business
      204
    • Housing manufacturers and construction companies
      187
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      124
    • Structural Design Office
      66
    • Finance, securities and insurance
      35
    • Restaurants and accommodations
      29
    • self-employed
      29
    • Mining
      26
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. A new surface inspection technology using megahertz ultrasonic oscillation—ultrasonic probes utilizing components with iron plating on polyimide film.
COMPANY
  • Sep 24, 2024
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Sep 24, 2024

A new surface inspection technology using megahertz ultrasonic oscillation—ultrasonic probes utilizing components with iron plating on polyimide film.

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology through the development of ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibrations, utilized in surface inspection of substrate components and pre-evaluation of precision cleaning parts, leveraging the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to the propagation phenomena of surface elastic waves, we have enabled effective use tailored to the purpose (evaluation) through the construction and modification of logical models.
Surface inspection technology
Surface inspection technology
Surface inspection technology
Surface inspection technology
  • Inquiry about this news

    Contact Us Online
  • More Details & Registration

    Details & Registration

Related Documents

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブVer4.pdf[4187163]

Related Links

Ultrasonic Probe
Ultrasonic probe using components with iron plating on polyimide film

Related product

IMG_0046aa.jpg

Ultrasonic control system using ultrasonic probes

Control system using ultrasonic oscillation probe and receiving probe.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control system that applies acoustic characteristic analysis and evaluation technology related to the manufacturing of original products: ultrasonic oscillation probes. This is a new application system for cleaning, modification, inspection, and more, utilizing ultrasonic waves. It is also possible to apply control through the combination of low-frequency vibrations and sounds. Developed from an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model, it serves as an applied system technology. The key point is the utilization method of surface elastic waves. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object (Note 1), it is important to address this as an original nonlinear resonance phenomenon (Note 2). Note 1: Propagation characteristics of ultrasonic waves - Nonlinear characteristics - Response characteristics - Fluctuation characteristics - Effects due to interactions Note 2: Original nonlinear resonance phenomenon This occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena, resulting in ultrasonic vibration resonance phenomena.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1231.jpg

Basic Research System on Ultrasonic Cleaning

We have developed a "basic experimental system" for ultrasonic cleaning.

The Ultrasonic System Research Institute has developed a "Fundamental Experimental System" related to ultrasonic cleaning that applies the "ultrasonic system using degassing and microbubble control." - Experimental examples of the developed system - Confirmation of the cleaning effect of cavitation Confirmation of the acceleration effect Confirmation of the cleaning effect by acoustic flow Confirmation of the cleaning effect by liquid circulation Confirmation of the interaction between cavitation and liquid circulation Confirmation of the interaction between the cleaning object and the cleaning tank ..... Ultrasonic propagation characteristics 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment autocor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function mulnos: power contribution rate analysis function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7378.jpg

Ultrasonic oscillation control technology that combines multiple sweep oscillations.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology method controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) of the dynamic characteristics (changes in nonlinear phenomena) related to the propagation state of the ultrasound. From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1: Two types of sweep oscillation control (linear type) 2: Three types of sweep oscillation control (nonlinear type) 3: Four types of sweep oscillation control (mixed type) 4: Dynamic control (variable type) based on the combinations above Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1: Linear variable control type 2: Nonlinear variable control type 3: Mixed variable control type (dynamic variable type)

  • pump
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5986.jpg

Megahertz ultrasound oscillation control device using an original ultrasonic probe.

Consulting support for the development of ultrasonic devices based on technology that controls surface acoustic waves through surface treatment of ultrasonic probe piezoelectric elements.

The Ultrasonic System Research Institute manufactures and sells ultrasonic systems utilizing the following original products: 1) Sound Pressure Measurement and Analysis System (Ultrasonic Tester) 2) Megahertz Ultrasonic Oscillation Control Probe 3) Ultrasonic Oscillation System (20 MHz type) Features of the Sound Pressure Measurement and Analysis System: Ultrasonic Tester 200 MHz type * Measurement (analysis) frequency range Specification: 0.01 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Display of measurement results in graph form * Includes software for time-series data analysis Overview Specifications of the Ultrasonic Probe Measurement range: 0.01 Hz to 200 MHz Oscillation range: 0.5 kHz to 25 MHz Propagation range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation equipment example: Function generator Propagation Characteristics of the Ultrasonic Probe 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • Non-destructive testing
  • Other measuring instruments
  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1016.jpg

Manufacturing, development, and consulting for ultrasonic cleaning machines.

Manufacturing, development, and consulting for ultrasonic cleaning systems tailored to tank sizes according to the purpose.

The Ultrasonic System Research Institute has developed measurement, analysis, and evaluation techniques regarding the effects of changes from standard sizes on ultrasonic propagation states for standard-type ultrasonic devices that allow for easy ultrasonic control. By applying this technology, we manufacture, develop, and provide consulting for ultrasonic systems tailored to the desired tank size. Device Overview * Ultrasonic System (Ultrasonic Cleaner) 1: Ultrasonic 2: Ultrasonic Tank 3: Circulation Pump (Deaeration and Microbubble Generation Liquid Circulation System) 4: Timer Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Autocorrelation) 2) Detection of Nonlinear Phenomena (Changes in Bispectrum) 3) Detection of Response Characteristics (Analysis of Impulse Response) 4) Detection of Interactions (Analysis of Power Contribution Rate) Note: "R" is a free statistical processing language and environment autcor: Autocorrelation Analysis Function bispec: Bispectrum Analysis Function mulmar: Impulse Response Analysis Function mulnos: Power Contribution Rate Analysis Function

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20191129-0001ss.jpg

Surface treatment technology using fine bubbles and ultrasound.

Relaxation and uniform treatment of surface residual stress using ultra-fine bubbles and megahertz acoustic flow control.

<<Deaeration Fine Bubble Generation Liquid Circulation Device>> 1) By narrowing the suction side of the pump, cavitation is generated. 2) Cavitation causes bubbles of dissolved gas to form. The above describes the state of the deaeration liquid circulation device. 3) When the concentration of dissolved gas decreases, the size of the bubbles formed by cavitation becomes smaller. 4) Through appropriate liquid circulation, fine bubbles of less than 20μ are generated. The above describes the state of the deaeration microbubble generation liquid circulation device. 5) When ultrasonic waves are applied to the above-mentioned deaeration fine bubble generation liquid circulation device, the ultrasonic waves disperse and crush the fine bubbles, and when measuring the fine bubbles, the distribution of ultrafine bubbles becomes greater than that of fine bubbles. The above state indicates that ultrasonic waves can be stably controlled. 6) In the state where ultrasonic waves can be stably controlled, the original product: a megahertz ultrasonic oscillation control probe is used to control the oscillation of megahertz ultrasonic waves. The method of controlling the sound pressure level is achieved by controlling the original nonlinear resonance phenomenon of liquid circulation and megahertz ultrasonic waves, setting and controlling it to an effective dynamic state.

  • Turbid water and muddy water treatment machines
  • Other measuring instruments
  • Manufacturing Technology

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_5837.jpg

Nonlinear Oscillation Control Technology of Ultrasound ――Sweep Oscillation Know-How――

Development technology for dynamic control systems using ultrasound.

The Ultrasonic System Research Institute has developed a new nonlinear sweep oscillation control technology for ultrasound, utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveform and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function

  • Water Treatment
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_00214.jpg

Megahertz ultrasonic cleaner (consulting available)

Sound flow control technology

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) in the range of 1-100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring, based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the propagation characteristics of ultrasonic waves based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. Note 1: Original Nonlinear Resonance Phenomenon The resonance phenomenon of ultrasonic vibrations occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena. We believe that this technology can be utilized in various fields, and we are implementing proposals in various consulting services.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_0401.jpg

Development of megahertz ultrasonic oscillation control technology using ultrasonic cleaners.

Combination technology of function generator and ultrasonic probe

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probe to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring, based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is to confirm the ultrasonic propagation characteristics of the target object, and it is important to set the oscillation conditions of the function generator as a control method for the original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This refers to the resonance phenomenon of ultrasonic vibrations that occurs when the generation of harmonics caused by original oscillation control is realized at a high amplitude due to resonance phenomena.

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(14)

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Development technology of ultrasonic systems based on sound pressure measurement analysis.

Development technology of ultrasonic systems based on sound pressure measurement analysis.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Optimization Technology for Ultrasonic Cleaning Machines — Optimization and Control Technology for Cavitation and Acoustic Flow Based on Sound Pressure Measurement, Analysis, and Evaluation —

Optimization Technology for Ultrasonic Cleaning Machines — Optimization and Control Technology for Cavitation and Acoustic Flow Based on Sound Pressure Measurement, Analysis, and Evaluation —

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

Ultrasonic Oscillation System of Megahertz Ultrasonic Waves (Catalog) 2025.01.07

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation system of megahertz ultrasonic (US-2024XXXX specifications)

Ultrasonic oscillation system of megahertz ultrasonic (US-2024XXXX specifications)

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Utilization Technology of Megahertz Ultrasonic Waves - Oscillation Control Using Original Ultrasonic Probes -

Utilization Technology of Megahertz Ultrasonic Waves - Oscillation Control Using Original Ultrasonic Probes -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Dynamic Control Technology of Megahertz Ultrasonic - Ver2

Dynamic Control Technology of Megahertz Ultrasonic - Ver2

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

New Ultrasonic Control Technology - Measurement, Analysis, and Evaluation Technology of Ultrasonic Sound Pressure -

New Ultrasonic Control Technology - Measurement, Analysis, and Evaluation Technology of Ultrasonic Sound Pressure -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasound System Specification Document (for *** Co.) - Ultrasound Sound Pressure Measurement, Analysis, Evaluation, and Oscillation Control System -

Ultrasound System Specification Document (for *** Co.) - Ultrasound Sound Pressure Measurement, Analysis, Evaluation, and Oscillation Control System -

DOCUMENT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

Ultrasonic Oscillation System USP-2021-20MHz - Specification Document (Ultrasonic System Using Commercial Function Generator)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

A technology for controlling the generation of harmonics by adjusting the surface of the ultrasonic probe element.

A technology for controlling the generation of harmonics by adjusting the surface of the ultrasonic probe element.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation control technology based on surface acoustic characteristics — high frequency, low frequency, resonance, nonlinearity —

Ultrasonic oscillation control technology based on surface acoustic characteristics — high frequency, low frequency, resonance, nonlinearity —

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement, analysis, and evaluation technology 2024-5-24

Ultrasonic sound pressure measurement, analysis, and evaluation technology 2024-5-24

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface inspection technology using oscillation control of original ultrasonic probes.

Surface inspection technology using oscillation control of original ultrasonic probes.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Truck berth vehicle detection

It's not too late to address the "2024 Problem." Why not immediately reduce drivers' waiting times?

  • NEW
  • PRODUCT

Are you making progress on measures for the "2024 Problem"? The management of drivers' working hours is becoming stricter, and in the logistics field, reducing "waiting time for loading" has become an urgent issue. To address this challenge, our company, Hotron, proposes the "Vehicle Detection Ultrasonic Sensor 'HM-UX2'," which instantly grasps the availability of loading bays. The 'HM-UX2' contributes to the resolution of waiting times by accurately understanding the availability status, reducing unnecessary waiting and queuing, and shortening waiting times, thereby alleviating the burden on drivers! By replacing the "eyes" of your loading bay management with this high-precision sensor, why not start taking measures against the "2024 Problem"? Take a look at the product features: "Can it accurately detect availability?" "Can we really use it in our company?" "I just want to know the cost, even if it's an estimate." If you have any questions or requests, please feel free to consult us first.

Aug 08, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Non-contact light touch sensor "HA-T401/HA-T520"

A non-contact light touch sensor "HA-T Series" that realizes "wanting to open in a narrower range and in a limited manner" based on the surrounding environment of automatic doors.

  • NEW
  • PRODUCT

The non-contact beam touch sensor "HA-T401/HA-T520" has a compact detection range, making it an ideal automatic door sensor for installation on automatic doors facing narrow corridors or busy streets. Depending on the application and installation location, you can choose between "non-vision mounting type" and "non-vision built-in type." 【Features】 ● With the beam touch sensor, you can open and close the automatic door simply by bringing your hand close without touching it, ensuring hygiene. ● Depending on the installation environment, such as single sliding or bi-parting doors, the detection range can be set in four configurations: left, center, right, and a total of 12 spots. ● Two types of activation row settings are available to reduce unnecessary opening and closing of the automatic door due to cross traffic, contributing to energy-saving effects. ● The touch switch and infrared sensor are integrated, allowing for a switch between beam touch and infrared sensor with a single model. 【Recommended for such locations!】 ☑ Entrance facing a busy corridor ☑ Counter or sign near the door ☑ Buildings facing narrow corridors ☑ Buildings that prioritize aesthetics ☑ Hospitals and facilities that consider hygiene ☑ Large facilities with many doors ◎ For more details, please download the materials or contact us.

Aug 07, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Aug 06, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

The launch of the next-generation AI surveillance drone system "Grabee" has begun.

  • NEW
  • PRODUCT

Grabee is a next-generation monitoring solution equipped with new features specialized for forest fire and wildlife damage prevention, based on AI video analysis and location estimation technology developed at Guardian. In addition to the conventional location estimation function, it now includes flame identification and animal identification capabilities, enabling early detection and response to forest fires and wildlife damage. Furthermore, it supports mapping of fire areas and area calculations.

Aug 06, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
SysProBooth: Introducing the SysRobo and OMO-type Integrated Employment Management System.

The "HR EXPO" within the General Affairs, Human Resources, and Accounting Week [Tokyo] has successfully concluded with great enthusiasm.

  • NEW
  • COMPANY

Syspro Inc. exhibited at the "General Affairs, Human Resources, and Accounting Week [Tokyo] within the 'HR EXPO'" held at Tokyo Big Sight from June 25 (Wednesday) to June 27 (Friday), 2025. Thanks to everyone, we had many visitors and were able to conclude the event successfully. We would like to take this opportunity to express our deep gratitude to all the attendees and the organizers.

Aug 06, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • イプロスがリアル展示会を主催します! AI/DX 営業・マーケティング展 出展社募集中 リード数・商談数が止まらない!新しいリアル展示会を提供 会期 2026年3月24日(火)~25日(水) 会場 東京ビッグサイト東4ホール 出展概要資料を進呈!
    • Inquiry about this news

      Contact Us Online
    • More Details & Registration

      Details & Registration

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.