iPROS Urban Planning
  • Search for products by classification category

    • Building Materials
      Building Materials
      35534items
    • Facilities
      Facilities
      56041items
    • Lighting and Interior
      Lighting and Interior
      17353items
    • Common materials
      Common materials
      36689items
    • Civil Engineering Materials
      Civil Engineering Materials
      9546items
    • Construction, work and methods
      Construction, work and methods
      27305items
    • Surveys, Measurements, and Services
      Surveys, Measurements, and Services
      29200items
    • IT/Software
      IT/Software
      33824items
    • others
      others
      76652items
    • Store and facility supplies
      Store and facility supplies
      4409items
    • Office and commercial supplies
      Office and commercial supplies
      11496items
    • Hospital and welfare facility supplies
      Hospital and welfare facility supplies
      971items
    • Logistics Equipment
      Logistics Equipment
      6778items
    • Energy and Resources
      Energy and Resources
      11670items
  • Search for companies by industry

    • Information and Communications
      7219
    • others
      7040
    • Building materials, supplies and fixtures manufacturers
      6647
    • Service Industry
      4660
    • Trading company/Wholesale
      3001
    • Other construction industries
      2448
    • Electrical equipment construction business
      641
    • Interior Design
      526
    • Facility Design Office
      489
    • Construction Consultant
      465
    • Architectural design office
      360
    • retail
      346
    • Warehousing and transport related industries
      320
    • Electricity, Gas and Water Industry
      288
    • General contractors and subcontractors
      283
    • Interior construction business
      277
    • Medical and Welfare
      274
    • Educational and Research Institutions
      257
    • Building Management
      250
    • Renovation and home construction industry
      222
    • Water supply and drainage construction business
      201
    • Housing manufacturers and construction companies
      186
    • Transportation
      160
    • Real Estate Developers
      155
    • Fisheries, Agriculture and Forestry
      126
    • Structural Design Office
      66
    • Finance, securities and insurance
      38
    • Restaurants and accommodations
      30
    • self-employed
      29
    • Mining
      27
    • Public interest/special/independent administrative agency
      18
    • Police, Fire Department, Self-Defense Forces
      18
    • Store and building owners
      9
    • Property Owner
      8
    • Government
      8
    • Individual
      8
  • Special Features
  • Ranking

    • Overall Products Ranking
    • Overall Company Ranking
Search for Products
  • Search for products by classification category

  • Building Materials
  • Facilities
  • Lighting and Interior
  • Common materials
  • Civil Engineering Materials
  • Construction, work and methods
  • Surveys, Measurements, and Services
  • IT/Software
  • others
  • Store and facility supplies
  • Office and commercial supplies
  • Hospital and welfare facility supplies
  • Logistics Equipment
  • Energy and Resources
Search for Companies
  • Search for companies by industry

  • Information and Communications
  • others
  • Building materials, supplies and fixtures manufacturers
  • Service Industry
  • Trading company/Wholesale
  • Other construction industries
  • Electrical equipment construction business
  • Interior Design
  • Facility Design Office
  • Construction Consultant
  • Architectural design office
  • retail
  • Warehousing and transport related industries
  • Electricity, Gas and Water Industry
  • General contractors and subcontractors
  • Interior construction business
  • Medical and Welfare
  • Educational and Research Institutions
  • Building Management
  • Renovation and home construction industry
  • Water supply and drainage construction business
  • Housing manufacturers and construction companies
  • Transportation
  • Real Estate Developers
  • Fisheries, Agriculture and Forestry
  • Structural Design Office
  • Finance, securities and insurance
  • Restaurants and accommodations
  • self-employed
  • Mining
  • Public interest/special/independent administrative agency
  • Police, Fire Department, Self-Defense Forces
  • Store and building owners
  • Property Owner
  • Government
  • Individual
Special Features
Ranking
  • Overall Products Ranking
  • Overall Company Ranking
  • privacy policy
  • terms of service
  • About Us
  • Careers
  • Advertising
  1. Home
  2. Service Industry
  3. 超音波システム研究所
  4. Ultrasonic probe propagation characteristics test
PRODUCT
  • Feb 01, 2023
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
Feb 01, 2023

Ultrasonic probe propagation characteristics test

超音波システム研究所 超音波システム研究所
The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 100 MHz, based on the classification of ultrasonic propagation phenomena (ultrasonic propagation characteristic testing). We can manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. The key point is to confirm the ultrasonic propagation characteristics of the ultrasonic probes (note). The response characteristics to dynamic changes in ultrasound are the most important. This characteristic determines the range of possible harmonic generation. Currently, we are capable of manufacturing for the following ranges. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 300 MHz - Oscillation Range: 0.5 kHz to 100 MHz - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator Note: 1) Low-frequency resonance characteristics 2) Nonlinear characteristics of harmonics 3) Dynamic characteristics of ultrasonic propagation phenomena By understanding (measuring, analyzing, evaluating) the acoustic characteristics based on materials, shapes, and structures, we realize ultrasonic propagation states tailored to specific purposes.
Technology for evaluating the dynamic characteristics of original ultrasonic probes.
Technology for evaluating the dynamic characteristics of original ultrasonic probes.
Propagation characteristics of ultrasound (nonlinear characteristics, response characteristics, fluctuation characteristics, interactions)
Propagation characteristics of ultrasound (nonlinear characteristics, response characteristics, fluctuation characteristics, interactions)
  • Inquiry about this news

    Contact Us Online

Related Documents

超音波プローブの伝搬特性テスト.pdf[3018947]

Related product

IMG_0431.jpg

Ultrasonic sound pressure measurement analysis (consulting support)

Ultrasound consulting specialized in measurement and analysis of ultrasonic propagation conditions.

The Ultrasonic System Research Institute conducts consulting related to ultrasonic applications using a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the measurements, analyses, and results obtained using ultrasonic testers in chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate ultrasonic state for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our understanding of the relationships between various effects related to vibration phenomena, drawing on the principles of statistical mathematics. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective regarding the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on good confirmations.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
data1.jpg

Machining technology utilizing megahertz ultrasonic vibrations.

Machining technology using ultrasonic systems (sound pressure measurement analysis, oscillation control).

The Ultrasonic System Research Institute has developed "ultrasonic oscillation control (processing) technology" that utilizes the acoustic characteristics (vibration response characteristics and nonlinear phenomena) of objects (tools, target items, etc.) through a sound pressure measurement analysis device (ultrasonic tester) and a megahertz ultrasonic oscillation control probe. With this developed technology, it has become possible to control nonlinear vibration phenomena in target objects through "ultrasonic oscillation and output control," achieving dynamic control of ultrasonic waves (changes in bispectrum). The original ultrasonic oscillation control probe allows for the utilization and control of nonlinear effects of ultrasonic vibrations. This is an effective ultrasonic utilization (control) technology tailored to applications such as processing, cleaning, surface modification, and promoting chemical reactions. There are interactions with the acoustic characteristics of cutting tools (drills, reamers, cutters, knives, etc.) and the size and material of cutting oils, jigs, and target objects, making the analysis (self-correlation, impulse response, contribution rate, bispectrum) complex. However, various optimizations based on the analysis results of sound pressure measurement data become possible.

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20220501b2.jpg

Optimization technology for resonance phenomena and nonlinear phenomena using ultrasound.

- Experimental and Research Cycle of Abstract Algebra Models and Ultrasonic Phenomena - Technology for Achieving Dynamic Control of Ultrasound

The Ultrasonic System Research Institute has developed a technology for ultrasonic <dynamic control> that optimizes the interaction of ultrasonic vibrations based on various analysis results of ultrasonic propagation states using an original ultrasonic system and an abstract algebra model. Note: The control of resonance phenomena (low harmonics) and nonlinear phenomena (high harmonics) is achieved by setting oscillation control conditions based on a logical model. In contrast to existing control technologies, this technique establishes and implements optimal control states tailored to the purposes of ultrasonic applications (cleaning, stirring, processing, etc.) through new measurement and evaluation parameters (note) concerning the entire propagation path of ultrasonic vibrations, including various propagation tools. This is a method and technology that can be applied immediately, and we offer it as consulting services (there is an increasing track record of precision cleaning and stirring at the nano level). Note: Using original technology (ultrasonic tester), we measure, analyze, and evaluate dynamic changes in the propagation state of water tanks, transducers, target objects, and tools, among others. (Parameters: power spectrum, autocorrelation, bispectrum, power contribution rate, impulse response characteristics, etc.)

  • Non-destructive testing
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1921.jpg

Ultrasound oscillation system using original ultrasound probes.

An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). **Technology for Controlling Nonlinear Ultrasonic Vibration Phenomena** 1) Control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator, tailored to the acoustic characteristics of the target object. 2) Manufacturing technology for an ultrasonic oscillation control probe that enables control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for an ultrasonic measurement probe that allows for the measurement of changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasonic waves according to specific objectives. Note: The dynamic control of ultrasonic waves is performed based on the analysis and evaluation of sound pressure data related to nonlinear phenomena, considering the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control. (Sound pressure measurement, analysis, confirmation, and evaluation are conducted using an ultrasonic tester.)

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1004.jpg

A new surface inspection technology using megahertz ultrasonic oscillation.

Surface inspection using ultrasonic oscillation from ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type).

The Ultrasonic System Research Institute has developed a new component inspection technology using megahertz ultrasonic oscillation, based on its track record of analyzing ultrasonic data propagating on the surface of target objects. This method applies the measurement and analysis technology of "sound pressure and vibration" through the control of original ultrasonic probe oscillation. We provide consulting and explanations of ultrasonic evaluation technology by developing ultrasonic probes tailored to the purpose (vibration modes propagating on the surface of target objects). This is an application of new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect new features regarding the surface condition of the target object. In particular, this fundamental technology serves as a new evaluation parameter for ultrasonic vibration, utilized in surface inspection of substrate components and preliminary evaluation of precision cleaning parts, based on the response characteristics derived from combinations of oscillation and reception. By measuring, analyzing, and evaluating the dynamic characteristics of ultrasonic waves related to surface elastic wave propagation phenomena, we have enabled effective utilization tailored to the purpose (evaluation) by constructing and modifying logical models.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
20150823w.jpg

Improvement of the ultrasonic cleaning machine (Field support for the addition of fine bubble generation system)

Application of technology to analyze and evaluate the dynamic characteristics of ultrasound.

The Ultrasonic System Research Institute has developed a method (system) for the analysis and evaluation of ultrasound, applying "measurement, analysis, and control" technology related to the nonlinearity of ultrasound. We are providing on-site support for the additional installation of a degassing fine bubble generation liquid circulation system utilizing this technology. To utilize (control) the complex and changing conditions of ultrasound in a stable manner, we offer on-site services to add and confirm sound pressure measurements for the degassing fine bubble generation liquid circulation system in specific tanks present at the site. **Explanation of Degassing Fine Bubble Generation Liquid Circulation Technology** By ensuring appropriate liquid circulation and the diffusibility of fine bubbles, a uniform state of cleaning liquid is achieved. Ultrasound propagates through the uniform liquid, generating a stable state of ultrasound. From this state, liquid circulation control is performed to realize the desired ultrasonic effects (propagation state). This involves achieving a uniform sound pressure distribution throughout the tank, optimizing ultrasound, liquid circulation pumps, fine bubbles, etc. The operational control becomes the know-how for individual tanks.

  • Non-destructive testing
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_1365.jpg

Ultrasound and Surface Elastic Waves (Development Technology of Original Ultrasound System)

Original ultrasonic probe's "oscillation and control" technology

The Ultrasonic System Research Institute has developed applied technology that utilizes surface acoustic waves through ultrasonic control. By combining ultrasound and surface acoustic waves, we achieve dynamic control of ultrasonic propagation. The key point is the ability to efficiently control nonlinear phenomena caused by surface acoustic waves. As specific technologies, we have developed system technologies that control nonlinear phenomena (bisectional spectrum) resulting from the interaction of ultrasound with water tanks and tools, tailored to specific purposes (cleaning, stirring, stress relief, inspection, etc.). As a result of utilizing measurement and analysis techniques for ultrasonic propagation states, we have confirmed the realization of harmonic control and the ability to adjust nonlinear phenomena. The know-how lies in confirming and responding to the acoustic characteristics of the system (measurement, analysis, evaluation).

  • Other measuring instruments
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
1249193d20023sss.jpg

Manufacturing and sales of original ultrasonic systems (sound pressure measurement analysis, oscillation control).

Ultrasonic system combining "Ultrasonic Tester NA (10 MHz)" and "Ultrasonic Oscillator (20 MHz)"

An ultrasonic system that allows for easy measurement analysis and oscillation control. The Ultrasonic System Research Institute is publicly conducting experiments using a system that combines the "Ultrasonic Tester NA (recommended type)," which allows for easy measurement analysis of ultrasonic waves, and the "Ultrasonic Oscillation System (20 MHz)," which enables easy oscillation control of ultrasonic waves. Ultrasonic Probe: Overview Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment Example: Function Generator Note: Ultrasonic Propagation Characteristics 1) Detection of Vibration Modes (Changes in Autocorrelation) 2) Detection of Nonlinear Phenomena (Changes in Bispectrum) 3) Detection of Response Characteristics (Analysis of Impulse Response Characteristics) 4) Detection of Interactions (Analysis of Power Contribution Rates) Note: "R" Free Statistical Processing Language and Environment - autocor: Autocorrelation Analysis Function - bispec: Bispectrum Analysis Function - mulmar: Impulse Response Analysis Function - mulnos: Power Contribution Rate Analysis Function

  • Water Treatment
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
IMG_7308.jpg

Propagation characteristics of ultrasound - vibration modes, nonlinear phenomena, response characteristics, interactions -

Technology for evaluating the dynamic characteristics of original ultrasonic probes—self-correlation, bispectrum, impulse response characteristics, power contribution rate.

Technology for Evaluating the Dynamic Characteristics of Ultrasonic Probes We offer consulting services for this technology. If you are interested, please contact us via email. By utilizing the acoustic properties (surface elastic waves) of various materials (glass containers, etc.), we have confirmed the effects of ultrasonic stimulation on structures, machine tools, and various manufacturing lines, even in a 5000-liter water tank with ultrasonic output below 20W. This was developed as a method for controlling and applying nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave motion and an ultrasonic model from abstract algebra. The key point is the technology for utilizing surface elastic waves on ultrasonic element surfaces. By confirming the propagation characteristics of ultrasound based on the conditions of the target object (material, shape, structure, size, quantity, etc.), it is important to address it as an original nonlinear resonance phenomenon. Note 1: Propagation characteristics of ultrasound Propagation characteristics of ultrasonic probes: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates)

  • Vibration and Sound Level Meter
  • Scientific Calculation and Simulation Software
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Related catalog(10)

Technology for Evaluating Ultrasonic Propagation States and Nonlinear Phenomena - Ver3

Technology for Evaluating Ultrasonic Propagation States and Nonlinear Phenomena - Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic oscillation control probe that enables control of resonance phenomena and nonlinear phenomena.

Ultrasonic oscillation control probe that enables control of resonance phenomena and nonlinear phenomena.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Original ultrasonic experiment using an ultrasonic system (sound pressure measurement analysis, oscillation control)

Original ultrasonic experiment using an ultrasonic system (sound pressure measurement analysis, oscillation control)

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Surface residual stress relaxation and uniformity treatment of ultrasonic cleaner (tank surface)

Surface residual stress relaxation and uniformity treatment of ultrasonic cleaner (tank surface)

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement analysis system for oscillation control experiment No. 2

Ultrasonic sound pressure measurement analysis system for oscillation control experiment No. 2

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Machining technology utilizing megahertz ultrasonic vibrations.

Machining technology utilizing megahertz ultrasonic vibrations.

PRODUCT
  • E-book viewing
  • Catalog download

Contact this catalog

Integration of Ultrasonic Phenomena and Logical Models - Original Ultrasonic Technology -

Integration of Ultrasonic Phenomena and Logical Models - Original Ultrasonic Technology -

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Ultrasonic sound pressure measurement and analysis system and ultrasonic oscillation control system.

Ultrasonic sound pressure measurement and analysis system and ultrasonic oscillation control system.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

A technology for controlling the generation of harmonics by adjusting the surface of the ultrasonic probe element.

A technology for controlling the generation of harmonics by adjusting the surface of the ultrasonic probe element.

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

Based on the analysis of ultrasonic sound pressure measurement, the processes of cavitation and acoustic flow (cleaning, stirring, processing, surface treatment, ...) Ver3

TECHNICAL
  • E-book viewing
  • Catalog download

Contact this catalog

Distributors

超音波システム研究所
Service Industry
  • Added to bookmarks

    Bookmarks list

    Bookmark has been removed

    Bookmarks list

    You can't add any more bookmarks

    By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

    Free membership registration
超音波システム研究所
  • Official site
Phone number/address

news

Non-contact light beam touch sensor 'HA-T401'

Recommended for infection control! Introduction of non-contact sensors for facilities.

  • NEW
  • COMPANY

In recent times, there has been a growing interest in infection control measures and facility hygiene management. Our company offers non-contact sensor products that are recommended for commercial facilities, food factories, and nursing and caregiving facilities. 【Sensors for Automatic Doors】 ● Light Touch Sensor HA-T401 … When you wave your hand in front of the automatic door, the sensor detects the movement and opens or closes the door. This is recommended for making doors with touch switches non-contact. ● Hand Wave Sensor PF-R5, PF-U2, DHS-1 … Opens and closes the automatic door by waving your hand in front of the sensor. ● Foot Switch PF-01S/01D/03S/05 … Opens and closes the automatic door by placing your foot in the opening. 【Access Control System】 ● Face Recognition + Unmanned Temperature Measurement DS Series … Allows for face recognition along with mask detection and body temperature measurement simultaneously. ● Automatic Disinfectant Spray Dispenser PHW-03B … Automatically sprays disinfectant when you wave your hand in front of the sensor. 【Nursing and Care Sensors】 ● Infrared Bed Exit Sensor "Just Place It Pole-kun" … This bed exit sensor is installed next to the bed and notifies via nurse call when the subject enters the detection range. ◎ For more details, please download the catalog or contact us.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
When the sensor detects the car, the rotating light will turn on.

Ideal for entrances and exits of parking lots and stores! Alerts pedestrians of vehicle departures with the light from the rotating lamp! Here is a proposal for a departure warning sensor! Free catalog giveaway.

  • NEW
  • CATALOG

[To the owners of parking lots and parking lot construction companies] "I'm worried about not colliding with pedestrians when exiting the parking lot..." Among vehicle entrances to parking lots, stores, residences, and factories, particularly at entrances facing sidewalks or roadways, there is a risk of dangerous incidents such as collisions with pedestrians or between vehicles. To alleviate such concerns, Hotron proposes a [Vehicle Exit Warning Sensor] that detects vehicle departures using various sensors and alerts the surrounding area with LED lights and buzzers. The system consists of a simple configuration of "sensor" + "controller" + "switching power supply (24V)" + "LED rotating light." *Please note that a separate control panel is required to include the controller and switching power supply (24V) when using the exit warning system. *We kindly ask customers to arrange for the switching power supply (24V), LED rotating light, control panel, circuit breakers, etc. Since it can be retrofitted, it can also be used for existing parking lot entrances. We hope this will contribute to safer vehicle passage for everyone. ◎ For more details, please contact us or download the catalog.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Publication of the comprehensive catalog J-02.

  • NEW
  • CATALOG

The comprehensive catalog "General Catalog J-02" for the 2023 fiscal year has been completed. This comprehensive catalog features many Joe Prince products primarily used in industrial equipment and facilities. Please make use of it.

Nov 19, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Image of wireless set usage

Solve your problems with wired bed exit sensors by connecting a wireless set linked to the nurse call system!

  • NEW
  • PRODUCT

Do you have any concerns or requests regarding wired bed exit sensors? × Tangling or tripping over wired cables × Cable disconnection or damage × Worrying about forgetting to turn the switch back on after temporarily stopping the sensor. × Wanting to be notified of bed exits even from a location far from the nurse call outlet. Such concerns can be resolved simply by connecting our wireless nurse call linked set to the sensor! Our wireless nurse call linked set allows you to connect bed exit sensors like "Ugo-kun," "Foldable Thin Matta-kun," "Ayumi-chan," and "Just Place Pole-kun" to transmitters and receivers, reducing wiring around the bed area, alleviating concerns about tripping or falling due to cables, and contributing to a tidier work environment. Furthermore, it enables the use of bed exit sensors even from locations far from the nurse call outlet, allowing for more flexible equipment placement.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
HK-2

Recommended for earthquake measures for automatic doors and equipment! Seismic device HK-2.

  • NEW
  • PRODUCT

Japan is one of the top 10 countries in the world with frequent earthquakes. The 2020 White Paper on Land, Infrastructure, Transport and Tourism has also reported an increase in the probability of major earthquakes occurring. Regarding the Nankai Trough earthquake, the probability of an earthquake with a magnitude of 8 to 9 occurring within the next 30 years is estimated to be 70 to 80%. At Hotron, we recommend the introduction of seismic devices for earthquake countermeasures in buildings and equipment. The seismic device 'HK-2' is a product that automatically performs various controls that have been pre-set when it detects strong shaking equivalent to a seismic intensity of 5 lower or higher. For example, it can automatically execute actions such as: "Open automatic doors and gates to secure evacuation routes and access for emergency vehicles" "Transmit signals to the control room and stop facility equipment" "Unlock the keys to locked lockers" "Automatically play voice guidance" For more details, please download the materials or contact us.

Nov 18, 2025

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration
Return to news list
  • 簡単なのに、高機能 CMSもMAもこれ1つ リード獲得 商談創出 ferrer One
  • 生成AIの学びを、現場の成果に変える。 東京大学・松尾研発スタートアップ 生成AI・DX研修サービス 受講費用最大78%OFF
    • Inquiry about this news

      Contact Us Online

    Products

    • Search for Products

    Company

    • Search for Companies

    Special Features

    • Special Features

    Ranking

    • Overall Products Ranking
    • Overall Company Ranking

    support

    • site map
    IPROS
    • privacy policy Regarding external transmission of information
    • terms of service
    • About Us
    • Careers
    • Advertising
    COPYRIGHT © 2001-2025 IPROS CORPORATION ALL RIGHTS RESERVED.
    Please note that the English text on this page is automatically translated and may contain inaccuracies.