Introduction of Particle-PLUS Analysis Case: "Cleaning Process by CCP" Simulation Case
This is an analysis case regarding CCP (Capacitively Coupled Plasma) etching, which is one of the representative dry etching methods. Particle-PLUS specializes in plasma analysis within vacuum chambers and can quickly simulate etching rates and other parameters. ◇ Features of 'Particle-PLUS' - Excels in low-pressure plasma analysis. - By combining axisymmetric models with mirror-symmetric boundary conditions, it can obtain results quickly without the need for full device simulations. - Specializes in plasma simulations for low-pressure gases, where fluid modeling is challenging. - Supports both 2D and 3D analyses, allowing for efficient analysis of complex models. - As a strength of our in-house developed software, customization to fit customer devices is also possible. ◆ Various calculation results can be output ◆ - Potential distribution - Density distribution/temperature distribution/generation distribution of electrons and ions - Particle flux and energy flux to the walls - Energy spectrum of electrons and ions at the walls - Density distribution/temperature distribution/velocity distribution of neutral gas and more. *For more details, please feel free to contact us.
Inquire About This Product
basic information
**Features** - The time scheme uses an implicit method, allowing for stable time evolution calculations over a large time step Δt compared to conventional methods. - The collision reaction model between neutral gas and electrons and ions employs the Monte Carlo Scattering method, enabling accurate and rapid calculations of complex reaction processes. - The neutral gas module determines the initial neutral gas distribution used in the plasma module above, allowing for quick evaluation of gas flow using the DSMC method. - The sputtered particle module calculates the behavior of atoms sputtered from the target in plasma and neutral gas environments in magnetron sputtering devices, enabling quick evaluation of flux distribution on opposing substrates. *For other functions and details, please feel free to contact us.*
Price range
Delivery Time
P4
Applications/Examples of results
【Dual Frequency Capacitive Coupled Plasma】 - Optimization of voltage and other parameters to achieve high-density plasma - Damage to chamber walls - Optimization of power using external circuit models - It is possible to apply voltages to the electrode plates that align with real devices - The waveform of the applied voltage can be simulated smoothly and with relatively realistic voltages - Calculations are relatively stable to avoid applying unreasonable voltages 【DC Magnetron Sputtering】 - Uniformity of erosion dependent on magnetic field distribution - Adsorption distribution of sputtered materials on the substrate 【Pulsed Voltage Magnetron Sputtering】 - Optimization of the application time of pulsed voltage to efficiently sputter materials 【Ion Implantation】 - The effect of the substrate on the erosion distribution 【Time Evolution of Applied Voltage on Electrode Plates】 - It is possible to observe physical quantities that are difficult to measure experimentally, such as electron density and ion velocity distribution - By investigating electron density and ion velocity distribution, it is possible to examine the uniformity of films and damage to chamber walls - By changing calculation conditions, optimization of high-density plasma generation at low power is possible
Detailed information
-
Introduction to Particle-PLUS Analysis Examples This is an analysis case related to CCP (Capacitively Coupled Plasma) etching, which is one of the representative dry etching methods.
-
◇Model Overview Conducted substrate surface cleaning process analysis using CCP in an axisymmetric model.
-
It can be seen that the potential on the substrate side is negatively biased due to the self-bias effect.
-
Particle number density - Electron number density (period average) - Ar ion number density (period average)
-
Energy distribution - Electron energy - Ar ion energy
-
Electron flux ・Electron number flux ・Electron energy flux
-
Ar ion flux ・Ar ion number flux (period average) ・Ar ion energy flux (period average)
-
Cleaning of the substrate surface - Ru erosion rate The net cleaning amount can be evaluated considering recontamination due to dust.
catalog(3)
Download All CatalogsCompany information
Our company develops and sells a "Maintenance Management System" for managing and operating various plants, factories, and other facilities and assets. Currently, this system is undergoing significant evolution into a system that incorporates IoT technologies, such as sensor information and input from tablet devices, as well as AI technologies like machine learning, featuring functions for failure prediction and automatic scheduling. Additionally, as part of the recent trend of digital transformation (DX), there is a growing movement to digitize and automate manufacturing processes and research and development sites in factories to improve operational efficiency. In line with this trend, our company provides a solution aimed at enhancing efficiency in research and development environments, which is the Laboratory Information Management System (LIMS). This software includes features such as workflow management, data tracking, data management, data analysis, and integration of electronic lab notebooks.