Ultrasonic Cleaner Product List and Ranking from 44 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Sep 17, 2025~Oct 14, 2025
This ranking is based on the number of page views on our site.

Ultrasonic Cleaner Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Sep 17, 2025~Oct 14, 2025
This ranking is based on the number of page views on our site.

  1. 超音波システム研究所 Tokyo//Service Industry
  2. 富士工業 Shizuoka//others
  3. ティー・アイ・トレーディング Tokyo//Trading company/Wholesale
  4. 4 エスエヌディ Nagano//others
  5. 5 東京超音波技研 Tokyo//others

Ultrasonic Cleaner Product ranking

Last Updated: Aggregation Period:Sep 17, 2025~Oct 14, 2025
This ranking is based on the number of page views on our site.

  1. Ultrasonic Benchtop Viscometer "FCV-100" 富士工業
  2. Refrigeration tube cleaning machine ティー・アイ・トレーディング
  3. FS Series Ultrasonic Cleaner with Circulating Filtration System エスエヌディ
  4. Ultrasonic Liquid Viscosity Meter FUV-1 Model-104 Standard Type 富士工業
  5. 4 Ultrasonic Cleaner "Torcholler UCP Series" 東京超音波技研

Ultrasonic Cleaner Product List

16~30 item / All 186 items

Displayed results

Ultrasonic oscillation control technology (consulting support)

Ultrasonic oscillation control technology for controlling nonlinear vibration phenomena

This is a control technology based on measurement, analysis, and evaluation techniques of ultrasonic propagation states, featuring an original nonlinear resonance phenomenon (Note 1). It represents a new application technology for precision cleaning, processing, stirring, inspection, and surface treatment. Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics through original oscillation control, which achieves high amplitude ultrasonic vibrations through resonance phenomena. To efficiently utilize the acoustic properties (surface elastic waves) of various materials, the relaxation treatment of residual stress distribution on surfaces can be easily realized. From an engineering (experimental and technical) perspective on elastic waves and the ultrasonic model of abstract algebra, the original oscillation control method (Note 2) has been developed as an application method for nonlinear phenomena. Note 2: Original Oscillation Control Method Two types of ultrasonic oscillation are performed: one is sweep oscillation control, and the other is pulse oscillation control. Detailed settings are based on the purpose, target object, and tooling, and are configured according to a logical model from the vibration system as a whole.

  • others
  • Other analytical equipment
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic processing technology consulting - Control of megahertz ultrasonic oscillation -

Consulting on oscillation control technology for megahertz ultrasound based on ultrasonic (propagation state) measurement and analysis—oscillation waveforms and control know-how.

The Ultrasonic System Research Institute has developed "ultrasonic oscillation control (processing) technology" that utilizes the acoustic characteristics (vibration response characteristics and nonlinear phenomena) of objects (tools, targets, etc.) through a sound pressure measurement analysis device (ultrasonic tester) and a megahertz ultrasonic oscillation control probe. With the technology developed this time, it has become possible to control the vibration phenomena on the target object through "ultrasonic oscillation and output control," enabling dynamic control of ultrasonic vibrations (cleaning, processing, stirring, etc.) as a nonlinear effect of ultrasonic vibrations using the oscillation control probe. This is an effective ultrasonic utilization technology tailored to specific purposes for processing, cleaning, surface modification, and promoting chemical reactions.

  • others
  • Other analytical equipment
  • pump

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

(Customizable) Megahertz ultrasonic oscillation control probe

A megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation conditions from 1 to 900 MHz.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation states from 1 to 900 MHz by combining it with a function generator for controlling ultrasonic propagation states. This is a new application technology based on measurement, analysis, and evaluation techniques of ultrasonic propagation states for precision cleaning, processing, stirring, and inspection. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the technology for utilizing surface elastic waves on the surface of ultrasonic elements. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. Note 1: Propagation characteristics of ultrasonic waves include nonlinear characteristics, response characteristics, fluctuation characteristics, and effects due to interactions.

  • pump
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation control system with a maximum frequency of 25 MHz (manufactured and sold)

We manufacture and sell an "oscillation system at 20 MHz" that allows for easy control of megahertz ultrasonic oscillation.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control system that applies acoustic characteristic analysis and evaluation technology related to the manufacturing of original products: ultrasonic oscillation probes. This is a new application system for cleaning, modification, inspection, and more using ultrasonic waves. It is also possible to apply control through the combination of low-frequency vibrations and sounds. Developed from an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model, this application system technology has been created. The key point is the utilization of surface acoustic waves. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object (Note 1), it is important to address it as an original nonlinear resonance phenomenon (Notes 2, 3). Note 1: Propagation characteristics of ultrasonic waves - Nonlinear characteristics - Response characteristics - Fluctuation characteristics - Effects due to interactions Note 2: Original nonlinear resonance phenomenon The occurrence of harmonics generated by original oscillation control, realized at high amplitudes through resonance phenomena, leads to the resonance phenomenon of ultrasonic vibrations. Note 3: Transient ultrasonic stress wave

  • others
  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting services based on sound pressure measurement analysis using ultrasonic technology.

Consulting on ultrasonic cleaning technology using optimization techniques for cavitation and acoustic flow.

The Ultrasonic System Research Institute has developed a technology that applies "measurement, analysis, and control" techniques related to the nonlinearity of ultrasound to analyze and evaluate the dynamic characteristics of ultrasonic vibrations propagating through various media (elastic bodies, liquids, gases). This technology optimizes interactions related to cleaning objects, tools, ultrasonic transducers, water tanks, and liquid circulation according to specific objectives. By utilizing ultrasonic oscillation control probes and ultrasonic testers, we have developed optimization techniques for ultrasonic applications through the examination of various relationships and response characteristics (Note: power contribution rate, impulse response, etc.) based on previous oscillation, measurement, and analysis. Regarding the measurement and analysis of ultrasound, the setting of sampling time and other parameters utilizes original simulation technology. This technology is provided as consulting services for the optimization of ultrasonic systems (cleaning, stirring, processing, etc.).

  • others
  • Other analytical equipment
  • Traceability

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic sound pressure measurement analysis device and oscillation control device.

A combination of "Ultrasonic Tester NA," which allows for easy measurement and analysis of ultrasound, and "Ultrasonic Oscillation System," which enables easy control of ultrasonic oscillation.

Ultrasonic "Sound Pressure Measurement Analysis Device (Ultrasonic Tester NA)" The Ultrasonic System Research Institute manufactures and sells the "Ultrasonic Tester NA (Standard Type)", which allows for easy measurement and analysis of ultrasonic waves. System Overview (Recommended System: Ultrasonic Tester NA) 1. Price 10 MHz Type: 198,000 yen (including tax: 10% consumption tax) 100 MHz Type: 264,000 yen (including tax: 10% consumption tax) 200 MHz Type: 297,000 yen (including tax: 10% consumption tax) 2. Contents One dedicated probe for measuring sound pressure of ultrasonic cleaners One general-purpose ultrasonic measurement probe One oscilloscope set One set of analysis software, instruction manual, and various installation sets (USB memory) 3. Features * Measurement (analysis) frequency range 10 MHz Type: from 0.1 Hz to 10 MHz 100 MHz Type: from 0.1 Hz to 100 MHz 200 MHz Type: from 0.1 Hz to 200 MHz * Capable of measuring surface vibrations * Continuous measurement for 24 hours * Simultaneous measurement of any two points * Measurement results displayed in graphs * Analysis software for time-series data included

  • others
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Custom-made support for ultrasonic oscillation control probes.

Ultrasonic probe capable of controlling ultrasonic propagation conditions above 900 MHz.

The Ultrasonic System Research Institute offers custom-made ultrasonic probes capable of controlling ultrasonic propagation states above 900 MHz. We manufacture and develop original ultrasonic oscillation control probes tailored to your objectives. Ultrasonic Probe: General Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed and evaluated through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we achieve propagation states tailored to your needs regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, inspection, etc., based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (such as glass containers), ultrasonic stimulation to structures and machine tools weighing several tons can be controlled with ultrasonic output below 20 W, even in a 5000-liter water tank.

  • Other analytical equipment
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Manufacturing technology for ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type)

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 500 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed through acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., and through oscillation control, we achieve propagation states tailored to specific purposes regarding acoustic pressure levels, frequencies, and dynamic characteristics. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model.

  • others
  • Other measuring instruments
  • Water Treatment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic technology for homogenization and fluidity improvement of liquids (especially solvents).

- Application of nanolevel stirring, emulsification, dispersion, and grinding technology to control nonlinear ultrasonic phenomena (acoustic flow) -

- Technology for controlling nonlinear ultrasonic phenomena for nano-level stirring, emulsification, dispersion, and grinding - Ultrasonic Treatment 1: "Nanonization of Powders" Ultrasonic Treatment 2: "Homogenization of Liquids and Improvement of Fluidity" The Ultrasonic System Research Institute has developed a technology for "homogenizing liquids and improving fluidity using ultrasonic technology," utilizing the "technology for controlling nonlinear ultrasonic phenomena (acoustic flow)." This technology controls ultrasonic (cavitation and acoustic flow) by utilizing (evaluating) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic tanks, and other items through surface inspection. Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, in accordance with the interactions between glass containers, ultrasonic waves, and target objects, through the control of ultrasonic oscillation. In particular, the dynamic characteristics of harmonics achieved through acoustic flow control enable responses at the nano level. Ultrasonic Propagation Characteristics: 1) Vibration Modes (Self-Correlation) 2) Nonlinear Phenomena (Bicoherence) 3) Response Characteristics (Impulse Response) 4) Interactions (Power Contribution Rate)

  • others
  • Water Treatment
  • pump

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development and manufacturing technology of ultrasonic propagation tools based on the control of surface acoustic wave propagation.

We provide consulting services for the development methods of ultrasonic propagation tools tailored to various usage purposes. --Application of sound pressure measurement and analysis technology--

The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 900 MHz, and has created new ultrasonic propagation tools. This technology is available for consulting. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we can achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (such as glass containers), ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation control technology that combines multiple sweep oscillations.

Control technology for nonlinear ultrasonic sweep oscillation based on the classification of ultrasonic propagation phenomena.

The Ultrasonic System Research Institute has developed a classification method for the phenomenon of ultrasonic vibrations propagation. Based on this classification, we have developed a nonlinear sweep oscillation control technology for ultrasound using a nonlinear resonant ultrasonic oscillation probe. This ultrasonic sweep oscillation control technology method controls the linear and nonlinear resonance effects according to the main frequency (power spectrum) of the dynamic characteristics (changes in nonlinear phenomena) related to the propagation state of the ultrasound. From previous experiments and data measurement analyses, we have been able to classify effective utilization methods into the following four recommended controls: 1: Two types of sweep oscillation control (linear type) 2: Three types of sweep oscillation control (nonlinear type) 3: Four types of sweep oscillation control (mixed type) 4: Dynamic control (variable type) based on the combinations above Furthermore, the variable type can be classified into the following three control types based on the sweep oscillation conditions: 1: Linear variable control type 2: Nonlinear variable control type 3: Mixed variable control type (dynamic variable type)

  • pump
  • Non-destructive testing
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic propagation control technology using titanium straws.

Application technology of <measurement, analysis, and control> using ultrasonic testers.

The Ultrasonic System Research Institute has developed "ultrasonic propagation control technology" using titanium straws based on the classification of cavitation and acoustic flow. This system technology controls changes in acoustic flow according to its intended use by analyzing the complex variations of flow, ultrasound, and fine bubbles through sound pressure measurement analysis that includes various interactions. Practically, it is a method to optimize ON/OFF control (or control of flow rate, flow velocity, etc.) for a degassing fine bubble generation liquid circulation device for showers against various interactions and vibration modes. In particular, by controlling the acoustic characteristics of titanium straws and the oscillation control of megahertz ultrasound, it achieves the effects of a new dynamic ultrasonic control technology by controlling the original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena, resulting in ultrasonic vibration resonance. Ultrasonic propagation characteristics: 1) Vibration modes 2) Nonlinear phenomena 3) Response characteristics 4) Interactions

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development technology for ultrasonic propagation control systems for various solvents.

Development of an ultrasonic probe utilizing the acoustic properties of Teflon rods (with iron cores).

The Ultrasonic System Research Institute has developed an ultrasonic oscillation control system for various solvents (such as hydrofluoric acid and hydrochloric acid) using Teflon (PTFE). By confirming the basic acoustic properties (response characteristics, propagation characteristics) of Teflon rods (with iron cores), it enables the desired ultrasonic propagation state through oscillation control (output, waveform, oscillation frequency, variations, etc.). Specifically, using two types of ultrasonic oscillation control probes, we set oscillation conditions based on measurements and analyses of the intended purpose and interactions, combining sweep oscillation and pulse oscillation. In particular, to control low-frequency resonance phenomena, we utilize high-frequency nonlinear phenomena. Therefore, sound pressure measurements require a measurement range of over 100 MHz. The key point is to evaluate the dynamic vibration characteristics of the system based on the measurement and analysis of sound pressure data. We are establishing and confirming new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for the intended purpose. Note: - Nonlinear characteristics (dynamic characteristics of harmonics) - Response characteristics - Fluctuation characteristics - Effects due to interactions

  • pump
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic Oscillation Control System (Ultrasonic System Research Institute)

Technology for Controlling Nonlinear Phenomena of Ultrasound

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). << Technology to Control Nonlinear Phenomena of Ultrasound >> 1) A control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator to match the acoustic characteristics of the target object. 2) Manufacturing technology for ultrasonic oscillation control probes that enable control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for ultrasonic measurement probes that make it possible to measure changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasound according to the intended purpose. Note: Based on the analysis and evaluation of sound pressure data related to nonlinear phenomena concerning the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control, we perform dynamic control of ultrasound (measurements, analysis, confirmation, and evaluation of sound pressure are conducted using an ultrasonic tester).

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic control technology using indirect containers

Technology for controlling nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed a technology for controlling "nonlinear phenomena of ultrasound (acoustic flow)" using indirect containers. This technology utilizes (evaluates) the ultrasonic propagation characteristics (analysis results) of indirect containers, ultrasonic water tanks, and other items to control ultrasound (cavitation and acoustic flow). Furthermore, it realizes effective ultrasonic (cavitation and acoustic flow) propagation states tailored to the structure, material, and acoustic characteristics of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nanoscale. This has been applied and developed from examples of dispersing metal powders to nanosize. By employing control technologies for standing waves and cavitation in relation to ultrasound, as well as propagation control technologies for indirect containers, we can appropriately control cavitation and acoustic flow. Through original measurement and analysis techniques for ultrasonic propagation states, we have confirmed the evaluation of acoustic flow and numerous know-how.

  • Scientific Calculation and Simulation Software
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration