Ultrasonic Cleaner(300) - List of Manufacturers, Suppliers, Companies and Products

Last Updated: Aggregation Period:Sep 17, 2025~Oct 14, 2025
This ranking is based on the number of page views on our site.

Ultrasonic Cleaner Product List

16~30 item / All 33 items

Displayed results

Multi-frequency ultrasonic cleaning machine "US-WS Series"

Three different frequency selections are available! An ultrasonic cleaner that can perform cleaning with various ultrasonic effects.

The "US-WS Series" is a tabletop multi-frequency ultrasonic cleaning machine capable of a wide range of cleaning, from rough and strong cleaning to fine and gentle cleaning. The ultrasonic oscillation employs a bolt-tightened Langevin-type transducer with high cleaning power. The wetted parts are made of stainless steel with excellent corrosion resistance, allowing for cleaning by switching between various frequencies or selecting a single frequency. Thanks to microcomputer control, the set time, temperature, and selected frequency are remembered during cleaning. 【Features】 ■ Capable of a wide range of cleaning ■ Ultrasonic oscillation uses a bolt-tightened Langevin-type transducer with high cleaning power ■ Wetted parts are made of stainless steel with excellent corrosion resistance ■ Allows for cleaning by switching between various frequencies or selecting a single frequency ■ Microcomputer control remembers the set time, temperature, and selected frequency during cleaning *For more details, please refer to the PDF document or feel free to contact us.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A system that controls the emission of two types of ultrasonic probes from a single channel.

Technology for controlling nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by utilizing the interactions generated from simultaneously oscillating two types of ultrasonic probes from one oscillation channel of a function generator. (Note: Nonlinear (resonance) phenomena refer to the resonance phenomenon of ultrasonic vibrations that occurs due to the generation of harmonics resulting from original oscillation control, achieving high amplitudes through resonance.) By optimizing the ultrasonic propagation characteristics of various materials to suit specific purposes, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic changes of surface elastic waves to be controlled according to their intended use. In practical terms, the use of multiple (two types of) ultrasonic probes for multiple (two types of) oscillations (sweep oscillation, pulse oscillation) generates complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure propagation states at high frequencies, or low frequency propagation states with high sound pressure levels tailored to the desired natural frequency.

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic Cleaner Comprehensive Catalog

A lineup of products that achieve quiet operating sounds through a soundproof design covered with sound-absorbing materials!

The "Ultrasonic Cleaner Comprehensive Catalog" is the product catalog of Tokyo Ultrasonic Research Co., Ltd., a manufacturer specializing in ultrasonic cleaners. It features products such as the "Torcholler Series," which can clean metal products and hard plastics, as well as the "Ultrasonic Pipette Cleaner," which can efficiently clean large quantities of pipettes with a large cleaning tank and powerful ultrasonic waves, and "Desktop Ultrasonic Cleaners." Our company can design and manufacture not only standard products but also tailor them to meet customer needs. If you find standard ultrasonic cleaners insufficient, please feel free to consult us. [Contents (excerpt)] ■ Ultrasonic Cleaner 40KHz Type ■ Ultrasonic Pipette Cleaner ■ Ultrasonic Cleaner 28KHz Type ■ Desktop Ultrasonic Cleaner ■ Large and Long Desktop Ultrasonic Cleaner *For more details, please refer to the PDF document or feel free to contact us.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for controlling nonlinear vibration phenomena of ultrasound.

Evaluation technology for ultrasonic propagation conditions based on the measurement and analysis of sound pressure data.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing two function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation (sweep) with two different waveforms. Note: Nonlinear (resonance) phenomena By generating higher harmonics (above the 10th order) through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic control of surface elastic wave changes according to the intended use. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Waste and Cost Reduction through Waste Solvent Recycling

The distillation regeneration test is free! In the case of high boiling point solvents, we have proposed a vacuum type distillation regeneration device.

We would like to introduce a case study on waste and cost reduction for manufacturers using organic solvents in paint manufacturing and painting processes. The company faced the challenge of wanting to promote the recycling of waste solvents in-house as part of their zero-emission initiatives. Therefore, depending on the boiling point of the organic solvents used, we proposed the introduction of a small-scale distillation regeneration unit for cases where the monthly discharge is around 1 ton. As a result, when using 1 ton of typical thinner per month, it became possible to recover approximately 85% of regenerated liquid equivalent to new liquid. [Case Study] ■ Target Customer: Paint and Coating Manufacturers ■ Challenge: To promote the recycling of waste solvents in-house as part of their zero-emission initiatives ■ Effects - When using 1 ton of typical thinner per month, it is possible to recover approximately 85% of regenerated liquid equivalent to new liquid - Reduction in new liquid usage: Approximately 3 million yen/year

  • Waste treatment facility
  • Waste treatment facilities
  • Other resource recycling

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development and manufacturing technology of ultrasonic propagation tools based on the control of surface acoustic wave propagation.

We provide consulting services for the development methods of ultrasonic propagation tools tailored to various usage purposes. --Application of sound pressure measurement and analysis technology--

The Ultrasonic System Research Institute has developed manufacturing technology for ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 900 MHz, and has created new ultrasonic propagation tools. This technology is available for consulting. Ultrasonic Probe: Outline Specifications - Measurement Range: 0.01 Hz to 200 MHz - Oscillation Range: 0.5 kHz to 25 MHz - Propagation Range: 0.5 kHz to over 900 MHz (confirmed through analysis) - Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. - Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we can achieve propagation states tailored to specific purposes regarding sound pressure level, frequency, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials (such as glass containers), ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W.

  • Water Treatment
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

(Customizable) Megahertz ultrasonic oscillation control probe

A megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation conditions from 1 to 900 MHz.

The Ultrasonic System Research Institute has developed a megahertz ultrasonic oscillation control probe that enables the utilization of ultrasonic propagation states from 1 to 900 MHz by combining it with a function generator for controlling ultrasonic propagation states. This is a new application technology based on measurement, analysis, and evaluation techniques of ultrasonic propagation states for precision cleaning, processing, stirring, and inspection. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the technology for utilizing surface elastic waves on the surface of ultrasonic elements. By confirming the propagation characteristics of ultrasonic waves depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. Note 1: Propagation characteristics of ultrasonic waves include nonlinear characteristics, response characteristics, fluctuation characteristics, and effects due to interactions.

  • pump
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Manufacturing technology for ultrasonic probes (oscillating type, measuring type, resonant type, nonlinear type)

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed technology to manufacture ultrasonic probes that can control ultrasonic propagation states from 500 Hz to over 500 MHz, tailored to specific applications. Ultrasonic Probe: Overview Specifications Measurement Range: 0.01 Hz to 200 MHz Oscillation Range: 1.0 kHz to 25 MHz Propagation Range: 0.5 kHz to over 900 MHz (confirmed through acoustic pressure data analysis) Materials: Stainless steel, LCP resin, silicon, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., and through oscillation control, we achieve propagation states tailored to specific purposes regarding acoustic pressure levels, frequencies, and dynamic characteristics. This is a new foundational technology for precision cleaning, processing, stirring, and inspection based on measurement, analysis, and evaluation techniques for ultrasonic propagation states. By utilizing the acoustic properties of various materials, ultrasonic stimulation can be controlled for structures and machine tools weighing several tons, even in a 3000-liter water tank, with ultrasonic output below 20 W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model.

  • others
  • Other measuring instruments
  • Water Treatment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A technology/device that simultaneously irradiates multiple different "ultrasonic transducers."

Ultrasound is captured as a <ultrasound dynamic system>, and analysis and control are performed.

The Ultrasonic System Research Institute has applied and developed technology utilizing "ultrasonic transducers" of multiple different frequencies. The applied technology developed this time is a technique that changes the effects of cavitation and acceleration into a specific power spectrum of propagation frequency through the control of standing waves. With ultrasonic irradiation at frequencies of 28 + 72 kHz and an output of 200 W, it is possible to achieve a dispersion effect of 1 micron. Additionally, ultrasonic irradiation at frequencies of 28 + 40 kHz and an output of 280 W can clean without causing damage. Through original measurement and analysis technology of ultrasonic propagation states, we have confirmed that control states can be realized by the combination of transducers. This represents a new ultrasonic technology, which, including the general effects of ultrasonic dynamic characteristics, serves as a significant and distinctive operational technique for the development of new materials, stirring, dispersion, cleaning, chemical reaction experiments, etc., and is utilized and developed in consulting. We will provide consulting support regarding the logical explanation of the principles and specific methods (techniques).

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

A technology for alleviating surface residual stress through the control of megahertz ultrasonic oscillation.

Surface treatment technology using a megahertz ultrasonic oscillation control probe -- Improvement treatment of metal fatigue strength (relaxation and uniformization of surface residual stress) --

The Ultrasonic System Research Institute has developed methods for measuring, analyzing, and evaluating surface residual stress by applying the following technologies: 1) Manufacturing technology for ultrasonic probes 2) Evaluation technology for ultrasonic propagation conditions 3) Surface inspection technology using ultrasound Based on numerous achievements, we believe that various applications are possible as ultrasonic utilization technology, and we are making related technologies publicly available. Specific examples: Surface treatment know-how: Standard settings Output: 13-15V Rectangular wave: Duty 47.1% Sweep range: 500kHz - 13MHz, 2 seconds Settings for low-intensity targets (or long processing times): Output: 1-3V Rectangular wave: Duty 47.1% Sweep range: 300kHz - 3MHz, 1 second (or 100kHz - 5MHz, 1 second) Note: The oscillation conditions can vary significantly due to the ultrasonic propagation characteristics of the target object and the oscillation characteristics of the function generator. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in self-correlation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Flow-type ultrasonic control technology using a small pump

Original product: Ultrasonic control technology based on measurement, analysis, and evaluation of acoustic flow using an ultrasonic tester.

The Ultrasonic System Research Institute has developed a "flow-type ultrasonic (acoustic flow) control technology" that dynamically controls the propagation state of ultrasound (acoustic flow) through liquid circulation using a small pump. By using an ultrasonic tester to analyze the complex changes in flow and ultrasound, including the interactions of the water tank, liquid (microbubbles), and ultrasonic transducer, this system technology allows for the control of acoustic flow changes tailored to specific applications. In practical terms, it is a method for optimizing various interactions and vibration modes while considering the installation state of the liquid circulation device and the surface elastic waves of the target object, enabling ON/OFF control (or control of flow rate, flow velocity, etc.) of the current liquid circulation device. In particular, by utilizing the characteristics of the pump to alternately circulate liquid and gas, new effects of ultrasound and microbubbles are being realized. In nano-level applications, as a "flow-type ultrasonic system," efficient ultrasonic utilization has been achieved through "ultrasonic showers" that include frequency changes of over 300 megahertz.

  • pump
  • others
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation (sweep oscillation, pulse oscillation, ...) system

Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology utilizing nonlinear vibration phenomena based on surface acoustic waves. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, jigs, objects, etc.), the desired ultrasonic propagation state can be achieved through oscillation control. By setting the oscillation conditions (waveform, output, control, etc.) with an original nonlinear resonant ultrasonic oscillation probe, we optimize high-frequency propagation states above 300 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). This technology is an efficient method for utilizing low-output ultrasonic oscillation. The key point is the setting of various parameters utilizing the characteristics of a discrete function generator through digital control. By using the nonlinear resonant ultrasonic oscillation probe, the control range of sound pressure levels due to resonance phenomena is greatly expanded, which is significantly different from conventional sound pressure levels caused by resonance phenomena. Therefore, optimization of control settings based on sound pressure measurement analysis is necessary to avoid phenomena such as damage or destruction.

  • Special Construction Method
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Nonlinear oscillation control technology for ultrasonic probes based on sound pressure measurement analysis.

Ultrasonic oscillation and control technology based on measurement and analysis using an ultrasonic tester.

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by utilizing the interactions generated from simultaneously oscillating two types of ultrasonic probes from one oscillation channel of a function generator. Note: Nonlinear (resonance) phenomena refer to the resonance phenomenon that occurs when the generation of harmonics produced by original oscillation control is realized at high amplitudes, resulting in ultrasonic vibration resonance. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic changes of surface elastic waves to be controlled according to their intended use. In practical terms, multiple (two types of) ultrasonic probes generate multiple (two types of) oscillations (sweep oscillation, pulse oscillation), which create complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure at high frequency propagation states, or achieving low frequency propagation states with high sound pressure levels tailored to the desired natural frequency.

  • Scientific Calculation and Simulation Software
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic sound pressure measurement analysis system (10MHz oscilloscope type)

Ultrasound measurement and analysis can be easily performed with the ultrasound tester NA (10MHz oscilloscope type).

The Ultrasonic System Research Institute (located in Hachioji City, Tokyo) has developed the Ultrasonic Tester NA (100MHz oscilloscope type), which makes ultrasonic measurement and analysis easy. Features (Standard Specifications) - Measurement (Analysis) Frequency Range: 0.1Hz to 10MHz - Ultrasonic Oscillation: 1Hz to 1MHz - Capable of measuring surface vibrations - Continuous measurement for 24 hours - Simultaneous measurement of any two points - Display of measurement results in graph form - Attached software for time-series data analysis This is a measurement system using ultrasonic probes. The ultrasonic probe is attached to the target object for oscillation and measurement. The measured data is analyzed considering position, state, and elastic waves, detecting various acoustic performances.

  • Other analytical equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Manufacturing technology for custom-made ultrasonic oscillation control probes (characteristic testing)

Acoustic property test using ultrasound

The Ultrasonic System Research Institute offers custom-made ultrasonic probes that can control ultrasonic propagation states from 500 Hz to 900 MHz. We manufacture and develop original ultrasonic oscillation control probes tailored to specific purposes. The key point is the operational confirmation of the original probes. The responsiveness to dynamic changes in ultrasonic transmission and reception is the most important factor. This characteristic determines the range of applications for harmonics. Currently, we can accommodate the following ranges: Ultrasonic Probe: Outline Specifications Measurement Range: 0.01 Hz to 100 MHz Oscillation Range: 1 kHz to 25 MHz Propagation Range: 1 kHz to over 900 MHz Materials: Stainless steel, LCP resin, silicone, Teflon, glass, etc. Oscillation Equipment: Example - Function Generator By understanding the acoustic properties of metals, resins, glass, etc., we achieve propagation states tailored to specific purposes regarding sound pressure levels, frequencies, and dynamic characteristics through oscillation control. This is a new foundational technology for precision cleaning, processing, stirring, inspection, etc., based on measurement, analysis, and evaluation techniques for ultrasonic propagation states.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration