Ultrasonic Cleaner Product List and Ranking from 46 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Nov 05, 2025~Dec 02, 2025
This ranking is based on the number of page views on our site.

Ultrasonic Cleaner Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Nov 05, 2025~Dec 02, 2025
This ranking is based on the number of page views on our site.

  1. 超音波システム研究所 Tokyo//Service Industry
  2. エスエヌディ Nagano//others
  3. ティー・アイ・トレーディング Tokyo//Trading company/Wholesale
  4. 4 東京超音波技研 Tokyo//others
  5. 4 イーソニック Tokyo//Information and Communications

Ultrasonic Cleaner Product ranking

Last Updated: Aggregation Period:Nov 05, 2025~Dec 02, 2025
This ranking is based on the number of page views on our site.

  1. Refrigeration tube cleaning machine ティー・アイ・トレーディング
  2. FS Series Ultrasonic Cleaner with Circulating Filtration System エスエヌディ
  3. Directional ultrasonic speaker イーソニック
  4. 4 Ultrasonic Cleaner "Torcholler UCP Series" 東京超音波技研
  5. 5 Online Individual Consulting: Ultrasonic Technology 超音波システム研究所

Ultrasonic Cleaner Product List

91~105 item / All 186 items

Displayed results

Analysis of sound pressure measurement of ultrasonic equipment (autocorrelation, bispectrum, etc.)

Application of feedback analysis using multivariate autoregressive models.

Features (in the case of standard specifications) * Measurement (analysis) frequency range Specification: 0.1 Hz to 100 MHz * Surface vibration measurement is possible * Continuous measurement for 24 hours is possible * Simultaneous measurement of any two points * Measurement results displayed in graphs * Utilization of original analysis software for time series data This is a measurement system using ultrasonic probes. Measurements are conducted by attaching the ultrasonic probe to the target object. For the measured data, considering position and state along with elastic waves, various acoustic performances are detected. Consulting services are available for sound pressure measurement analysis technology: 1) Operation of measurement equipment 2) Operation of analysis software 3) Evaluation methods for analysis results <Concept of Analysis: Statistical Thinking> Statistical mathematics has both abstract and concrete aspects, and through contact with concrete elements, abstract thoughts or methods are developed, which is the characteristic of statistical mathematics. Ultrasonic propagation characteristics: 1) Detection of vibration modes 2) Detection of nonlinear phenomena 3) Detection of response characteristics 4) Detection of interactions

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Sweep oscillation control system below 1 MHz

Ultrasonic oscillation control system using a commercial function generator and ultrasonic oscillation probe.

The Ultrasonic System Research Institute has published a method for applying the "Ultrasonic Oscillation System (1 MHz)," which allows for easy control of ultrasonic oscillation, through timer control. Specific examples: 1) Preventing the deterioration of machining oil by irradiating it with ultrasound at night. 2) Improving quality through ultrasonic irradiation on NC machines. 3) Irradiating shelves that store metal and resin parts with ultrasound (surface modification). 4) Improving fluidity and uniformity of concentration by irradiating plating solutions, cleaning solutions, solvents, etc., with ultrasound. 5) Enhancing welding quality by irradiating welding machines with ultrasound. 6) Relieving surface residual stress by irradiating brazing devices and bending processing devices with ultrasound. 7) Improving cleaning levels by irradiating ultrasonic cleaning machines with ultrasound. ... ... 19) Others: 1: Combined use with various vibrations (e.g., motors, etc.). 2: Maintenance through ultrasonic irradiation during holidays (2-3 hours). 3: Aging treatment through ultrasonic irradiation. ... ... Combined use with fine bubbles. Combined oscillation control of multiple ultrasonic sources. Use of ultrasonic propagation tools.

  • Non-destructive testing
  • others
  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Acoustic property test using ultrasound (confirmation of suitability for ultrasonic cleaning)

Application of a new surface inspection technology using megahertz ultrasonic oscillation.

The Ultrasonic System Research Institute has developed a new surface inspection technology using megahertz ultrasonic oscillation based on its track record of analyzing ultrasonic data propagating on the surface of target objects. Using this technology, we will evaluate the ultrasonic propagation characteristics of the items to be cleaned and compile a report proposing effective control, frequency, and output levels for ultrasonic cleaning machines. This method applies measurement and analysis techniques for "sound pressure and vibration" by controlling the oscillation of the ultrasonic probe. By using an original ultrasonic probe tailored to the vibration modes propagating on the surface of the target object, we can confirm the propagation state of ultrasonic waves in narrow grooves and edge areas. Furthermore, through original oscillation control, we will measure and analyze the dynamic characteristics of low-frequency propagation properties and the generation state of harmonics due to nonlinearity. This is an application of the new ultrasonic oscillation control technology. By utilizing nonlinear phenomena related to megahertz ultrasonic propagation states that match the acoustic characteristics of the target object, it is possible to detect the unique acoustic properties of the object.

  • Non-destructive testing
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasound system (manufacturing, sales, and consulting support)

---Optimization Technology for Ultrasonic Utilization---

The Ultrasonic System Research Institute provides the following services through its original products: ultrasonic systems (sound pressure measurement analysis, oscillation control). 1) Manufacturing and sales of ultrasonic systems (sound pressure measurement analysis, oscillation control) 2) Consulting services related to ultrasonic utilization technology << Manufacturing and Sales >> 1) Original product: Ultrasonic system (sound pressure measurement analysis, oscillation control) System overview (standard system): - Ultrasonic tester NA 10MHz type - Oscillation system 20MHz type Price: 281,050 yen (including tax: 10% consumption tax) 2) Degassing fine bubble generation liquid circulation device Device overview: - Magnetic pump (Iwaki Magnetic Pump MD series MD-70RZ) - Timer - Hose and others Price: 99,000 yen (including tax: 10% consumption tax) 3) Other (onsite support: delivery, installation, operation explanation, etc.) Consulting fees (Estimates will be proposed based on the conditions for onsite visits...)

  • Other measuring instruments

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasonic cleaner (consulting support for utilization technology)

Sound flow control technology

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) from 1 to 100 MHz by utilizing a megahertz ultrasonic oscillation control probe in relation to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation to the target object can be controlled even in a 1000-liter tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic model of ultrasound. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the propagation characteristics of ultrasound depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, which is realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance.

  • Other measuring instruments
  • Water Treatment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation (sweep oscillation, pulse oscillation, ...) system

Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology utilizing nonlinear vibration phenomena based on surface acoustic waves. By confirming the basic acoustic characteristics (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, jigs, objects, etc.), the desired ultrasonic propagation state can be achieved through oscillation control. By setting the oscillation conditions (waveform, output, control, etc.) with an original nonlinear resonant ultrasonic oscillation probe, we optimize high-frequency propagation states above 300 MHz through high sound pressure resonance phenomena and harmonic generation phenomena (nonlinear phenomena). This technology is an efficient method for utilizing low-output ultrasonic oscillation. The key point is the setting of various parameters utilizing the characteristics of a discrete function generator through digital control. By using the nonlinear resonant ultrasonic oscillation probe, the control range of sound pressure levels due to resonance phenomena is greatly expanded, which is significantly different from conventional sound pressure levels caused by resonance phenomena. Therefore, optimization of control settings based on sound pressure measurement analysis is necessary to avoid phenomena such as damage or destruction.

  • Special Construction Method
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Nonlinear Oscillation Control Technology of Ultrasound ――Sweep Oscillation Know-How――

Development technology for dynamic control systems using ultrasound.

The Ultrasonic System Research Institute has developed a new nonlinear sweep oscillation control technology for ultrasound, utilizing the nonlinear vibration phenomena of surface elastic waves. Regarding complex vibration states: 1) Linear phenomena and nonlinear phenomena 2) Interactions and the acoustic characteristics of various components 3) Sound, ultrasound, and surface elastic waves 4) Low frequency and high frequency (harmonics and subharmonics) 5) Oscillation waveform and output balance 6) Oscillation control and resonance phenomena ... Based on the above, we optimize a new evaluation method for surface elastic waves using a statistical mathematical model based on sound pressure measurement data. Ultrasonic cleaning, processing, stirring, ... surface inspection, ... nanotechnology, ... applied research ... various responses are possible. Propagation characteristics of ultrasound: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response characteristics) 4) Detection of interactions (analysis of power contribution rates) Note: "R" is a free statistical processing language and environment. autcor: autocorrelation analysis function bispec: bispectrum analysis function mulmar: impulse response analysis function

  • Water Treatment
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Consulting support for the technology that utilizes ultrasound through tapping (with low-frequency stimulation).

Combination technology of sound and ultrasound—technology to optimize low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute develops and applies control technologies for ultrasound (nonlinear resonance phenomena) utilizing the combination of sound and ultrasound, based on the following technologies: - Ultrasonic oscillation control technology (original product: ultrasonic oscillation control probe) - Measurement technology for ultrasonic propagation conditions (original product: ultrasonic tester) - Analysis technology for ultrasonic propagation conditions (nonlinear analysis system for time-series data) - Optimization technology for ultrasonic propagation conditions (optimization processing of sound and ultrasound) - Development and manufacturing technology for ultrasonic oscillation probes and propagation tools - Technology for controlling surface acoustic waves of systems As an application example of this technology, we achieve effective use of ultrasound tailored to the conditions of various parts and materials (in air, underwater, in contact with elastic bodies, etc.) for purposes such as cleaning, surface modification, stirring, promoting chemical reactions, and vibration control of various systems.

  • pump
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Nanolevel stirring technology utilizing nonlinear phenomena of ultrasound.

Technology for stirring, emulsifying, dispersing, and grinding at the nanoscale using techniques to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed an effective stirring (emulsification, dispersion, grinding) technology utilizing "technology to control nonlinear phenomena of ultrasound (acoustic flow)." This technology controls ultrasound (cavitation, acoustic flow) by utilizing (evaluating) the ultrasonic propagation characteristics (analysis results) of indirect containers through surface inspection, ultrasonic tanks, and other items. Furthermore, it realizes effective ultrasonic (cavitation, acoustic flow) propagation states tailored to the structure, material, and acoustic properties of specific target objects, by controlling the oscillation of ultrasound in accordance with the interactions between glass containers, ultrasound, and target objects. In particular, the dynamic characteristics of harmonics through acoustic flow control enable responses at the nano level. It has been applied and developed from examples of dispersing metal powders to nanosize. November 2023: Developed ultrasonic oscillation control technology to control nonlinear phenomena. January 2024: Developed technology to measure, analyze, and evaluate the interactions of ultrasonic vibrations. February 2024: Developed surface treatment technology using megahertz ultrasound. April 2024: Developed optimization technology for resonance phenomena and nonlinear phenomena.

  • Concrete admixture
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasound system development technology based on sound pressure data analysis.

A technology for measuring, analyzing, and evaluating the propagation state of ultrasound, applied using feedback analysis techniques based on multivariate autoregressive models.

The Ultrasonic System Research Institute conducts consulting related to the use of ultrasound by utilizing a technology that measures, analyzes, and evaluates the propagation state of ultrasound, applying feedback analysis techniques based on multivariate autoregressive models. By organizing the previous measurements, analyses, and results (note) obtained using ultrasonic testers in a chronological order, we establish and confirm new evaluation criteria (parameters) that indicate the appropriate state of ultrasound for specific purposes. Note: - Nonlinear characteristics (dynamic characteristics of acoustic flow) - Response characteristics - Fluctuation characteristics - Effects due to interactions By developing original measurement and analysis methods that consider the acoustic properties of the target object and surface elastic waves, we deepen our new understanding of the relationships regarding various effects related to vibration phenomena, referencing statistical mathematical concepts. As a result, there is an increasing number of cases demonstrating that new nonlinear parameters are highly effective concerning the propagation state of ultrasound and the surface of the target object. In particular, evaluation cases related to cleaning, processing, and surface treatment effects lead to successful control and improvement based on favorable confirmations.

  • Scientific Calculation and Simulation Software
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasonic cleaner (acoustic flow control technology)

Technology for controlling nonlinear phenomena of ultrasound (acoustic flow)

The Ultrasonic System Research Institute has developed ultrasonic cleaning technology that enables control of acoustic flow (ultrasonic propagation state) in the range of 1-100 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled even in a 1000-liter water tank with an ultrasonic output of less than 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metals, glass, plastics). By confirming the propagation characteristics of ultrasonic waves based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon. We believe that this technology can be applied in various fields and are implementing proposals in various consulting services.

  • Scientific Calculation and Simulation Software
  • others
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Flow-type ultrasonic control technology using a small pump

Original product: Ultrasonic control technology based on measurement, analysis, and evaluation of acoustic flow using an ultrasonic tester.

The Ultrasonic System Research Institute has developed a "flow-type ultrasonic (acoustic flow) control technology" that dynamically controls the propagation state of ultrasound (acoustic flow) through liquid circulation using a small pump. By using an ultrasonic tester to analyze the complex changes in flow and ultrasound, including the interactions of the water tank, liquid (microbubbles), and ultrasonic transducer, this system technology allows for the control of acoustic flow changes tailored to specific applications. In practical terms, it is a method for optimizing various interactions and vibration modes while considering the installation state of the liquid circulation device and the surface elastic waves of the target object, enabling ON/OFF control (or control of flow rate, flow velocity, etc.) of the current liquid circulation device. In particular, by utilizing the characteristics of the pump to alternately circulate liquid and gas, new effects of ultrasound and microbubbles are being realized. In nano-level applications, as a "flow-type ultrasonic system," efficient ultrasonic utilization has been achieved through "ultrasonic showers" that include frequency changes of over 300 megahertz.

  • pump
  • others
  • Vibration and Sound Level Meter

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for controlling nonlinear vibration phenomena of ultrasound.

Evaluation technology for ultrasonic propagation conditions based on the measurement and analysis of sound pressure data.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing two function generators. This technology enables the control of nonlinear ultrasonic phenomena through oscillation (sweep) with two different waveforms. Note: Nonlinear (resonance) phenomena By generating higher harmonics (above the 10th order) through original oscillation control and resonating with low-frequency vibration phenomena, the generation of high-amplitude harmonics has been achieved, resulting in nonlinear (resonance) phenomena of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various components according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the dynamic control of surface elastic wave changes according to the intended use. Ultrasonic propagation characteristics: 1) Detection of vibration modes (changes in autocorrelation) 2) Detection of nonlinear phenomena (changes in bispectrum) 3) Detection of response characteristics (analysis of impulse response) 4) Detection of interactions (analysis of power contribution rates)

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation control technology using two function generators.

Application technologies of measurement, analysis, and control using ultrasonic testers - sweep oscillation technology and pulse oscillation technology.

The Ultrasonic System Research Institute has developed a completely new dynamic control technology for ultrasound by utilizing two function generators. Through oscillation with two different waveforms (sweep), we have realized a technology to control the nonlinear phenomena of ultrasound. Note: Nonlinear (resonance) phenomena By generating (10th order and higher) harmonics through original oscillation control and resonating with low-frequency vibration phenomena, we have achieved the generation of high-amplitude harmonics, which is the nonlinear (resonance) phenomenon of ultrasonic vibrations. By optimizing the ultrasonic propagation characteristics of various materials according to their intended use, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this is a system technology that controls the dynamic changes of surface elastic waves according to the intended purpose.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic system using a function generator

Ultrasonic oscillation (sweep oscillation) system for controlling nonlinear phenomena

The Ultrasonic System Research Institute has developed a technology to control the nonlinear vibration phenomena of surface elastic waves based on the acoustic characteristics of original ultrasonic probes. The key point is the setting of sweep oscillation conditions using two ultrasonic probes (essentially, it cannot be controlled with just one probe for ultrasonic oscillation control. By combining the oscillation settings of the two probes, the occurrence of resonance phenomena and nonlinear phenomena can be controlled). Resonance phenomena and nonlinear phenomena can be controlled within a frequency range tailored to the intended use. In particular, when strong stimulation is required, this is achieved by utilizing low-frequency resonance phenomena (e.g., breaking glass). When high-frequency stimulation is needed, this is achieved by utilizing high-frequency nonlinear phenomena (e.g., 700 MHz stimulation).

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration