Construction method×E&Dテクノデザイン - メーカー・企業と製品の一覧

Construction methodの製品一覧

16~30 件を表示 / 全 31 件

表示件数

[WIB Construction Method Case Study] Measures Against Machine Vibration in Manufacturing Plants

Improvement of the working environment! Introduction of a construction case where tire shred made of high-damping material was filled in the cell.

At Mitsui Sumitomo Construction in Ehime Prefecture, vibrations caused by machinery operation within the manufacturing plant were propagating to the adjacent office building (a four-story steel structure), resulting in significant vertical vibrations accompanied by a rumbling phenomenon on the 3rd and 4th floors, necessitating environmental improvements. As a countermeasure, a passage for transport vehicles was constructed between the manufacturing plant and the office building, and the 'WIB method' was implemented directly beneath it. Vibration measurements taken before and after the countermeasures showed a reduction of 10 dB on the 1st floor, while the rumbling phenomenon was eliminated on the 3rd and 4th floors, resulting in a reduction of 15 to 17 dB. Additionally, the vibration level, which had exceeded 70 dB before the countermeasures, dropped to below 60 dB afterward, improving the working environment. 【Case Summary】 ■ Location: Ehime Prefecture ■ Client: Mitsui Sumitomo Construction ■ Vibration Source: Factory vibrations ■ Target for Preservation: Adjacent office building ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Installation Position: Vibration propagation route *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Vibration Control Measures for Medical Facilities

Filling tire shred with high damping material between the underground vibration barrier and the improved column row! A case where the working environment has been improved.

At SEIHA located in Chiba Prefecture, vibrations from trains passing near medical facilities were interfering with operations involving precision equipment inside the medical rooms. In response, a 'WIB method' was implemented between the railway and the medical facility. Utilizing existing underground vibration isolation walls, a composite WIB design combining wall-shaped and slab-shaped structures was developed. Based on the micro-vibration tolerance curve for precision equipment, target vibration reduction amounts and target reduction frequency bands were established. After the measures were taken, vibrations in the target reduction frequency band were reduced to less than half, improving the operational environment. 【Case Summary】 ■ Location: Chiba Prefecture ■ Client: SEIHA Co., Ltd. ■ Vibration Source: Railway vibrations ■ Preservation Target: Precision equipment in medical facilities ■ Countermeasure Work: Wall-shaped WIB + Slab-shaped WIB ■ Installation Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Vibration Control Measures for the Construction of a New Expressway (1)

Measures were implemented between the construction area and the residential area! It was confirmed that ground vibrations are approximately 6dB lower, reducing vibrations by half!

In Mie Prefecture, there were concerns that construction vibrations from the new highway would propagate to nearby residences. To address this, the 'WIB method' was implemented between the construction area and the homes. After the measures were taken, a running test with a backhoe was conducted, comparing vibrations at the untreated and treated locations. As a result, it was confirmed that the ground vibrations at the treated location were approximately 6dB lower than those at the untreated location, effectively reducing the vibrations by half. 【Case Overview】 ■ Location: Mie Prefecture ■ Client: Tenox Co., Ltd. ■ Vibration Source: Construction work vibrations ■ Protected Target: One nearby residence ■ Countermeasure: Wall-type WIB method (screen type) ■ Installation Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Traffic Vibration Mitigation for Newly Constructed Roads

Confirmed a reduction of more than 10dB, reducing vibrations to less than one-third! Measures were implemented directly beneath the road!

In Yamanashi Prefecture, with the establishment of new embankment roads, it became necessary to preserve the environment of residential areas along the route after the road opened. Therefore, the "WIB method" was implemented directly beneath the road. A running test using a backhoe was conducted before and after the measures (before road construction). As a result, a reduction of more than 10 dB in both horizontal and vertical directions was confirmed near the public-private boundary, and vibrations were reduced to less than one-third. 【Case Summary】 ■ Construction Location: Yamanashi Prefecture ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several residential buildings along the road ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Residential Areas Along National Highways

Vibration measurements were conducted before and after the measures were implemented! A reduction of 4 to 5 dB in the vertical direction was confirmed!

In Saitama City, Saitama Prefecture, traffic vibrations from the national highway were affecting the living environment along the route, leading to complaints from residents. As a countermeasure, tire shred made of high-damping material was filled within a grid. Renovation work was carried out on the side road that runs between the national highway and the residential area, and the 'WIB method' was implemented directly beneath the road. After conducting vibration measurements before and after the countermeasures, a reduction of 4 to 5 dB in vertical direction was confirmed near the boundary between public and private land. 【Case Summary】 ■ Construction Location: Saitama Prefecture ■ Client: Saitama City ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several residential buildings along the national highway ■ Countermeasure Work: Wall-type WIB method (grid type) ■ Construction Position: Vibration propagation path *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Vibration Mitigation Measures for the Construction of New Expressways (2)

Compared to areas without measures, the ground vibration in areas with measures is about 6dB to 7dB lower! Vibration reduced to less than half!

In Mie Prefecture, there were concerns that the construction vibrations from the new highway would propagate to nearby public facilities. Therefore, the 'WIB method' was implemented directly beneath the construction vehicle road. After the measures were taken, running tests and impact tests using a backhoe were conducted, and the vibrations at the untreated and treated locations were compared. As a result, it was confirmed that the ground vibrations at the treated locations were approximately 6dB to 7dB lower than those at the untreated locations, reducing the vibrations to less than half. 【Case Overview】 ■ Location: Mie Prefecture ■ Client: Tenox Co., Ltd. ■ Vibration Source: Construction work vibrations ■ Preservation Target: Nearby public facilities ■ Countermeasure Work: Plate-type WIB method (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Traffic Vibration Mitigation for Existing Roads

Conducted driving tests with a 10-ton truck before and after the measures! We were able to achieve vibration reduction effects!

In Shizuoka Prefecture, vibration countermeasures were required for sections where complaints about vibrations had been occurring during road renovation work. As a result, the 'WIB method' was implemented directly beneath the road. Before and after the countermeasures, a driving test was conducted using a 10-ton truck. Vibration responses were measured and compared at the boundary between public and private properties along the route, on the ground within the site, and on the second floor of buildings. It was found that vibrations around the dominant frequency of 6Hz were reduced, achieving an average reduction of 10dB in the horizontal direction and 20dB in the vertical direction. [Case Summary] ■ Construction Location: Shizuoka Prefecture ■ Client: Imamura-gumi Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Several houses along the road ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the vibration source *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (2)

Traffic vibrations transmitted from the ground have been reduced! An environment that falls below regulatory standards has been created after the measures were implemented!

In the model house along the main road in Chiba Prefecture, there were concerns about the impact of traffic vibrations on the living environment due to the proximity of a heavily trafficked main road after the model house was newly constructed. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction level of 12dB (about 1/4 of the original vibration). This model house is planned along a heavily trafficked main road due to its appealing characteristics, but thanks to this construction, the traffic vibrations transmitted from the ground have been reduced, creating an expected quiet indoor environment suitable for the model house. [Case Overview] ■ Construction Location: Chiba Prefecture ■ Client: Tokyo Sekisui Heim Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the main road ■ Countermeasure Work: Plate-type WIB (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Model Houses (1)

Maintenance-free and semi-permanent! It creates a comfortable indoor environment without vibration transmission!

At the model house along the road in Tokyo, large vehicles pass by approximately every five minutes during the day, raising concerns about the impact of traffic vibrations on the living environment. The 'WIB method' was implemented directly beneath the model house, achieving a vibration reduction level of 10-12 dB (about 1/4 to 1/3 of the original vibration). This installation is maintenance-free and semi-permanent, ensuring that even after the model house becomes a regular residence, a comfortable indoor environment free from vibrations will be maintained. 【Case Summary】 ■ Location: Tokyo ■ Client: Mitsui Home Co., Ltd. ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Model house along the road ■ Countermeasure: Plate-type WIB (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Railway Vibration Mitigation for Residential Buildings Along Subway Lines

Support beams were also installed! We were able to keep the vibration level below 50dB!

In Tokyo, residential buildings are located close to railways that run underground, raising concerns about the impact of railway vibrations on the living environment after the construction of new homes. To address this, the 'WIB method' was implemented directly beneath the residences. Since building support was necessary, support piles were also installed. Vibration measurements were conducted before and after the implementation of the countermeasures, resulting in a reduction of vibrations by 12 to 17 dB (from 1/7 to 1/4), successfully keeping the vibration levels below 50 dB. 【Case Summary】 ■ Location: Tokyo ■ Client: Project owner ■ Vibration source: Railway vibrations ■ Preservation target: Residential buildings along the railway (underground) ■ Countermeasure method: Plate-type WIB (honeycomb cell type) ■ Installation position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, January 2019, Saitama Prefecture

Measures were implemented directly beneath each residence from Building A to Building E! The vibration level has been reduced to below 60dB!

Some plots of a residential development in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of the houses. Therefore, the 'WIB method' was implemented directly beneath each of the residential buildings from Building A to Building E. Vibration measurements were conducted before and after the countermeasures. As a result, the dominant vibration at 10Hz was reduced by 14dB (to 1/5 of the original vibration), successfully keeping the vibration level below 60dB. [Case Overview] ■ Construction Location: Saitama Prefecture ■ Client: Housing Manufacturer ■ Vibration Source: Railway Vibration ■ Preservation Target: Residential buildings along the railway (total of 5 buildings) ■ Countermeasure Work: Plate-type WIB method (honeycomb cell type) ■ Construction Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Railway Vibration Countermeasures for Residential Areas Along Railways, September 2018, Saitama Prefecture

Concerns about the impact on the living environment after residential construction! Introducing examples aimed at increasing vibration reduction effects!

Some of the residential development plots in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of the houses. Therefore, the 'WIB method' was implemented directly beneath the houses. In buildings D and E, where the vibration level exceeded 70dB before the measures were taken, the countermeasures were extended on the railway side to enhance the vibration reduction effect. After conducting vibration measurements before and after the measures, the dominant vibration at 10Hz was reduced by 6dB to 14dB (to 1/5 to 1/2 of the original vibration), successfully keeping the vibration level below 60dB. 【Case Summary】 ■ Location: Saitama Prefecture ■ Client: Housing manufacturer ■ Vibration source: Railway vibration ■ Preservation target: Residential buildings along the railway (total of 5 buildings) ■ Countermeasure work: Plate-type WIB (honeycomb cell type) ■ Construction position: Directly beneath the receiving side (partly on the propagation path) *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Road Traffic Vibration Mitigation for Residential Areas Along Elevated Bridges

Reduced vibrations of 4Hz by about 5dB and vibrations of 12.5 to 20Hz by about 10dB! The vibrations have become such that they do not affect livability!

The planned construction site for housing in Kanagawa Prefecture was experiencing traffic vibrations transmitted from the elevated bridge and the road in front of the site. As a countermeasure, we implemented measures directly beneath the apartment building. The vibrations from the elevated bridge were predominantly at 4Hz, while those from the road in front of the site ranged from 12.5 to 20Hz. We designed the "WIB method" to address each of these vibrations. As a result, we reduced the 4Hz vibrations by approximately 5dB and the 12.5 to 20Hz vibrations by about 10dB, resulting in vibrations that did not affect livability. [Case Summary] ■ Construction Location: Kanagawa Prefecture ■ Client: Housing Manufacturer ■ Vibration Source: Road Traffic Vibration ■ Preservation Target: Apartment Building (New Construction, 3 Stories) ■ Countermeasure: Plate-type WIB Method (Honeycomb Cell Type) ■ Construction Position: Directly Beneath the Receiving Side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Railway Vibration Mitigation for Residential Areas Along Railways, January 2017, Saitama Prefecture

Measures were implemented directly beneath the residence! Dominant vibrations in the 10-20Hz range have been reduced by 6-12dB!

Some plots of a residential development in Saitama Prefecture face a railway, raising concerns about the impact on the living environment after the construction of the houses. Therefore, the 'WIB method' was implemented directly beneath the houses. Vibration measurements were conducted before and after the countermeasures. Dominant vibrations in the range of 10 to 20 Hz were reduced by 6 to 12 dB (to 1/4 to 1/2 of the original vibration), keeping the vibration level below 60 dB. 【Case Overview】 ■ Location: Saitama Prefecture ■ Client: Housing manufacturer ■ Vibration source: Railway vibrations ■ Preservation target: Houses along the railway (total of 9 buildings; 5 buildings + 4 buildings) ■ Countermeasure work: Plate-type WIB method (honeycomb cell type) ■ Installation position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録

[WIB Construction Method Case Study] Road Traffic Vibration Countermeasures for Residential Areas Along Roads

Confirmed a vibration reduction of 3-6dB on the first floor and 4-5dB on the second floor! Introducing a case where livability has improved!

In residential houses along the roads in Tokyo, vibrations from large vehicles were propagating, and vertical vibrations were affecting the living environment. Therefore, during the rebuilding of the houses, the 'WIB method' was implemented directly beneath the residences. Vibration measurements were conducted before and after the countermeasures within the buildings. As a result, a reduction of 3-6 dB on the first floor and 4-5 dB on the second floor was confirmed, improving livability. [Case Summary] ■ Location: Tokyo ■ Client: Sekisui Heim Corporation ■ Vibration Source: Road traffic vibrations ■ Preservation Target: Houses along the road ■ Countermeasure Method: Plate-type WIB (honeycomb cell type) ■ Installation Position: Directly beneath the receiving side *For more details, please refer to the PDF document or feel free to contact us.

  • Ground foundation construction method
  • Ground improvement
  • Ground improvement materials

ブックマークに追加いたしました

ブックマーク一覧

ブックマークを削除いたしました

ブックマーク一覧

これ以上ブックマークできません

会員登録すると、ブックマークできる件数が増えて、ラベルをつけて整理することもできます

無料会員登録