Cleaning Machine Product List and Ranking from 262 Manufacturers, Suppliers and Companies

Last Updated: Aggregation Period:Oct 08, 2025~Nov 04, 2025
This ranking is based on the number of page views on our site.

Cleaning Machine Manufacturer, Suppliers and Company Rankings

Last Updated: Aggregation Period:Oct 08, 2025~Nov 04, 2025
This ranking is based on the number of page views on our site.

  1. null/null
  2. ホバート・ジャパン 本社 Tokyo//Facility Design Office
  3. フルテック Shizuoka//others
  4. 4 ウィンターハルター・ジャパン Saitama//others
  5. 5 サイト 本社 Shizuoka//Building materials, supplies and fixtures manufacturers

Cleaning Machine Product ranking

Last Updated: Aggregation Period:Oct 08, 2025~Nov 04, 2025
This ranking is based on the number of page views on our site.

  1. Under-counter cleaning machine 'FP' ホバート・ジャパン 本社
  2. Mortar and Ready-Mix Concrete Cleaning Equipment Rental <Environmentally Friendly Wastewater Treatment Device> サイト 本社
  3. CK-1513GSR 精和産業 東京営業所
  4. 4 High-pressure hot water cleaner "Nice Hot Series" バンザイ
  5. 5 Winterhalter Japan Co., Ltd. Comprehensive Catalog 2023 ウィンターハルター・ジャパン

Cleaning Machine Product List

991~1005 item / All 1015 items

Displayed results

Ultrasonic technology that controls the interaction of surface elastic waves.

Nonlinear control technology for ultrasound based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed a technology to control nonlinear ultrasonic phenomena by utilizing the interactions generated from simultaneously oscillating two types of ultrasonic probes from one oscillation channel of a function generator. Note: Nonlinear (resonance) phenomena refer to the resonance phenomenon of ultrasonic vibrations that occurs due to the generation of harmonics resulting from original oscillation control, realized at high amplitudes through resonance phenomena. By optimizing the ultrasonic propagation characteristics of various materials according to their intended purpose, efficient ultrasonic oscillation control becomes possible. Through the measurement and analysis of sound pressure data from ultrasonic testers, this system technology allows for the control of dynamic changes in surface elastic waves according to their intended use. In practical terms, the simultaneous oscillation (sweep oscillation, pulse oscillation) of multiple (two types of) ultrasonic probes generates complex vibration phenomena (original nonlinear resonance phenomena), achieving high sound pressure at high frequency propagation states, or low frequency propagation states at high sound pressure levels tailored to the desired natural frequency.

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • Non-destructive testing

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasonic system (cleaning, stirring, processing, surface treatment, etc.)

Application of sweep oscillation control technology to control nonlinear phenomena of ultrasound.

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states above 1-700 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, applicable to precision cleaning, processing, stirring, welding, plating, and more. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for several tons of target objects even in a 1000-liter water tank with ultrasonic output below 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics depending on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This phenomenon occurs due to the generation of harmonics resulting from original oscillation control, realized at high amplitudes through resonance phenomena, leading to ultrasonic vibration resonance phenomena.

  • Other measuring instruments
  • Non-destructive testing
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Megahertz ultrasonic system (application of ultrasonic oscillation control technology)

"Ultrasonic system" technology that enables control of ultrasonic propagation conditions in the 1-900 MHz range.

The Ultrasonic System Research Institute has developed ultrasonic system technology that enables control of ultrasonic propagation states from 1 to 900 MHz by utilizing a megahertz ultrasonic oscillation control probe for ultrasonic equipment. This is a new application technology for precision cleaning, processing, stirring, welding, and plating, based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, ultrasonic stimulation can be controlled for several tons of objects even in a 1000-liter water tank with an ultrasonic output of less than 20W. It was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic wave phenomena and an abstract algebraic ultrasonic model. The key point is the use of tools (elastic bodies: metal, glass, resin). By confirming the ultrasonic propagation characteristics based on the conditions of the target object, it is important to address it as an original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This occurs when the generation of harmonics caused by original oscillation control is realized at high amplitudes through resonance phenomena, resulting in ultrasonic vibration resonance phenomena.

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation (sweep oscillation, pulse oscillation) system

Technology to control low-frequency resonance phenomena and high-frequency nonlinear phenomena.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear vibration phenomena of surface acoustic waves using ultrasonic oscillation control technology. By confirming the basic acoustic characteristics of ultrasonic waves (response characteristics, propagation characteristics) for various targets (water tanks, transducers, probes, fixtures, objects, etc.), we realize ultrasonic propagation states tailored to specific applications through oscillation control. By setting the oscillation conditions for sweep oscillation and pulse oscillation using two or more types of nonlinear resonant ultrasonic oscillation control probes, we dynamically control high sound pressure level resonance phenomena and the generation of harmonics (nonlinear phenomena of the 10th order and above), achieving high-frequency propagation states of over 100 MHz. Note: Precision cleaning examples Sweep oscillation: 70 kHz to 15 MHz, 15 W Pulse oscillation: 13 MHz, 8 W This technology is an efficient method for utilizing low-power ultrasonic oscillation.

  • Scientific Calculation and Simulation Software
  • Other analytical equipment
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasound oscillation system using original ultrasound probes.

An ultrasonic system that easily controls the oscillation of megahertz ultrasound—applying technology to evaluate the propagation characteristics of ultrasonic probes.

The Ultrasonic System Research Institute has developed a technology to control the nonlinear phenomena of surface elastic waves (ultrasonic vibrations) that propagate through the target object, using an original ultrasonic system (sound pressure measurement analysis, oscillation control). **Technology for Controlling Nonlinear Ultrasonic Vibration Phenomena** 1) Control setting technology that adjusts the oscillation output, waveform, and variations of the oscillation control using a function generator, tailored to the acoustic characteristics of the target object. 2) Manufacturing technology for an ultrasonic oscillation control probe that enables control of changes in ultrasonic oscillation voltage, including adjustments to the oscillation surface. 3) Manufacturing technology for an ultrasonic measurement probe that allows for the measurement of changes in ultrasonic vibrations at 100 megahertz, including adjustments to the oscillation surface. 4) Optimization technology for sweep oscillation conditions. Using the above technologies, we control (optimize) the propagation state of ultrasonic waves according to specific objectives. Note: The dynamic control of ultrasonic waves is performed based on the analysis and evaluation of sound pressure data related to nonlinear phenomena, considering the interaction between the acoustic characteristics of the target object and ultrasonic oscillation control. (Sound pressure measurement, analysis, confirmation, and evaluation are conducted using an ultrasonic tester.)

  • Analysis and prediction system
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Development of megahertz ultrasonic oscillation control technology using ultrasonic cleaners.

Combination technology of function generator and ultrasonic probe

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probe to ultrasonic cleaners. This is a new application technology for precision cleaning, processing, and stirring, based on the measurement, analysis, evaluation, and technology of ultrasonic propagation states. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic ultrasonic model. The key point is to confirm the ultrasonic propagation characteristics of the target object, and it is important to set the oscillation conditions of the function generator as a control method for the original nonlinear resonance phenomenon (Note 1). Note 1: Original Nonlinear Resonance Phenomenon This refers to the resonance phenomenon of ultrasonic vibrations that occurs when the generation of harmonics caused by original oscillation control is realized at a high amplitude due to resonance phenomena.

  • Other measuring instruments
  • Analysis and prediction system
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Ultrasonic oscillation control system using an original ultrasonic probe.

- Technology for controlling low-frequency resonance phenomena and high-frequency nonlinear phenomena based on sound pressure measurement analysis and evaluation.

The Ultrasonic System Research Institute manufactures and sells an "Oscillation System (20MHz)" that allows for easy control of megahertz ultrasonic oscillation. System Overview (Ultrasonic Oscillation System (20MHz)) Contents (20MHz Type) - Two ultrasonic oscillation probes - One set of function generator - One set of operation manual (USB memory) Features (20MHz Type) - Ultrasonic oscillation frequency Specification: 20kHz to 25MHz (or 24MHz) - Output range: 5mVp-p to 20Vp-p - Sampling rate: 200MSa/s (or 250MSa/s) This system utilizes commercially available function generators. We will propose a quoted price with a function generator set according to your needs. Standard Reference Example Oscillation System 20MHz starting from 80,000 yen November 2024: Development of megahertz flow-type ultrasonic technology November 2024: Development of ultrasonic sound pressure data analysis and evaluation technology December 2024: Development of nonlinear oscillation control technology for ultrasonic probes January 2025: Development of megahertz flow-type ultrasonic system

  • Non-destructive testing
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Technology for using ultrasonic cleaners through sweep oscillation.

- Technology combining sweep oscillation with ultrasonic probes and ultrasonic cleaners -

The Ultrasonic System Research Institute has developed ultrasonic oscillation control technology that enables the utilization of ultrasonic propagation states above 100 MHz by applying a function generator and ultrasonic probe to ultrasonic cleaners. This is a new application technology based on the measurement, analysis, evaluation, and techniques of ultrasonic propagation states, aimed at precision cleaning, processing, and stirring. By utilizing the acoustic properties (surface elastic waves) of various materials, it is possible to control ultrasonic stimulation above 100 MHz to the target object with an ultrasonic output of less than 20 W, even in a 1000-liter water tank. This was developed as an application method for nonlinear phenomena through an engineering (experimental and technical) perspective on elastic waves and an abstract algebraic model of ultrasound. The key point is to confirm the ultrasonic propagation characteristics of the target object, which is important for setting the oscillation conditions of the ultrasonic oscillation control probe as an optimization of the system's vibration modes related to sweep oscillation and pulse oscillation, serving as a control method for the original nonlinear resonance phenomenon.

  • Scientific Calculation and Simulation Software
  • Other measuring instruments
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

<Dynamic System of Ultrasonics> - Optimization of Liquid Circulation -

Control technology for acoustic flow (nonlinear phenomena) based on sound pressure measurement analysis.

The Ultrasonic System Research Institute has developed a system that applies technology to measure and analyze the state of ultrasonic waves propagating in the liquid within an ultrasonic tank, setting and controlling the propagation state of ultrasonic waves according to the effects of the tank's structure, strength, manufacturing conditions, and the state of liquid circulation. The liquid circulation within the ultrasonic tank is captured as a system, and the primary purpose of many ultrasonic (tank) applications is to predict or control the sound pressure changes of the liquid inside the tank. However, numerous issues have been pointed out in many implementations due to discrepancies between theory and practice. In response to such cases: 1) The removal of obstacles involves the use of statistical data analysis methods, which is the technology for measuring and analyzing ultrasonic propagation states. 2) Based on the results of data analysis related to the subject, the characteristics of the subject are confirmed, which is the technology for detecting the acoustic properties related to the surface elastic waves of the object. 3) Progressing to control realization through characteristic confirmation involves technology for controlling nonlinear phenomena. By employing the above methods, the utilization state of ultrasonic waves has been improved for efficient use, and there are numerous examples of original systems that have realized the intended use of ultrasonic waves.

  • Scientific Calculation and Simulation Software
  • Vibration and Sound Level Meter
  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Cost reduction: Pallet cleaning machine, pallet cleaning device; CO2 reduction measures.

【Food and beverages, chemicals, resins and plastics, industrial machinery, food machinery】 The only domestic specialist in pallet cleaning machines, Plattec has the number one industry track record.

We offer a wide range of processing capabilities (10 to 200 sheets per hour) tailored to meet our customers' needs. Additionally, our large-scale commercial equipment has accumulated extensive know-how, preventing competitors from catching up. We provide not only cleaning equipment but also proposals for logistics material handling lines, logistics materials, utility work such as construction, electrical, and water supply and drainage during the installation of cleaning machines, boiler installation, fire protection equipment work, disaster prevention measures, and fuel supply. We also accept external cleaning of pallets. You can trust us with everything related to pallet cleaning and cleaning machines! In addition to pallet cleaning equipment, we have many achievements in cleaning lines for collapsible containers and logistics materials for home delivery services such as cooperatives. Leave the total cleaning of logistics to Pratec! <Examples of industries served> - Pharmaceutical factories, food factories, sugar factories, salt factories, fragrance factories, vegetable production factories, mushroom production factories, film production factories, dairy factories, beverage factories, beer factories, sake breweries, precision machinery parts factories, automobile parts factories, canning, bottling, PET bottle production, rental pallet depots, pallet production factories, confectionery, baking, seafood processing, warehouses, and transportation businesses.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Pallet cleaning device model variations

Highly regarded in fields that require dryness! A culmination of extensive achievements and unique know-how.

Platech Co., Ltd. is a specialized manufacturer of pallet washing machines, proposing models tailored to your needs, from space-saving devices to fully automated washing and drying lines, backed by a reliable maintenance system. We have extensive achievements in various fields, including containers, packaging, beverages, food processing, pharmaceuticals, and even cleaning operations, particularly focusing on high processing capacity and long operating hours, which have earned us high praise for precision and energy-saving measures. [Features] - Measures to prevent incoming moisture (0 moisture) for inline and automatic warehouses - Prevention of complaints due to wet stains on cardboard cases and paper bags - Effective operation of small pallets - Removal of insect and mold odors, sterilization *For more details, please refer to the PDF materials or feel free to contact us.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Multi-stage cleaning device equipped MDS120, MDS150, MDS180

It is a type that keeps in-flight pressure loss low and boasts the highest manufacturing achievements.

Introducing the multi-stage washing device equipped (utility model registered) MDS120 / MDS150 / MDS180. This type expands the gas-liquid contact area with a three-layer filling material, keeping the internal pressure loss low. It boasts the highest manufacturing performance.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

Commercial Stand-On Floor Scrubber BR 65/95 RS Bp DOSE

Cleaning efficiency has improved with the incorporation of Kärcher's unique features.

This is the latest model of a commercial stand-on floor scrubber that allows for safe and comfortable work from a high vantage point, redesigned to be more user-friendly than the previous model. It features a detergent-saving system (DOSE) that minimizes waste of cleaning agents and a key management system (KIK) that enables uniform cleaning regardless of the operator, both of which are introduced for the first time in a stand-on model, achieving more efficient cleaning.

  • Building Cleaning Equipment

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Transaction Example] Company A in Saitama Prefecture, Industrial Cleaning Version

Introducing the case of Company A, which achieved cost reduction by outsourcing cleaning operations.

We would like to introduce a cleaning transaction case from Company A in Saitama Prefecture. Before the transaction, the cleaning operations were conducted in-house. There were many inconsistencies in cleaning (not all dirt was removed) and drying (not completely dry), which resulted in prolonged inspection times. Additionally, having to rewash items led to very poor work efficiency, incurring extra labor and costs. After the transaction, by outsourcing the cleaning operations to our company, the quality after cleaning significantly improved. As a result, the time previously spent on cleaning could be redirected to other tasks, ultimately leading to an increase in overall factory production and sales. [Before the transaction] - Degreasing cleaning was done manually and simply, and drying was performed using industrial fans. - There were many inconsistencies in cleaning and drying, which took time for inspection, and having to rewash items resulted in very poor work efficiency, incurring extra labor and costs. *For more details, please refer to the PDF document or feel free to contact us.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration

[Case Study] Machine Parts Manufacturing Factory Company A - Industrial Cleaning Version

Time spent on cleaning was redirected to other tasks for increased efficiency! A case study of cleaning in a machine parts manufacturing factory.

At Company A in Saitama Prefecture, they performed degreasing cleaning manually by soaking the workpieces in a cleaning solution and drying them with industrial fans, without introducing cleaning equipment. When performing degreasing cleaning manually, the issues that inevitably arise include the inability to completely remove dirt and the "liquid dripping" where the cleaning solution does not dry completely and leaks out from gaps. Although they were conducting manual cleaning in-house to reduce costs, they ended up spending extra time (and thus costs) on the degreasing cleaning itself, time for checking all items, re-cleaning, wiping, and investigating the causes when defects occurred. Since we took on their request, they were able to maintain high and consistent cleaning quality, and by reallocating the time spent on cleaning to other tasks, they achieved greater efficiency, which made them very happy. [Case Summary] ■ Client: Machine Parts Manufacturing Company A ■ Challenge: Cleaning manually without having their own equipment *For more details, please refer to the PDF document or feel free to contact us.

  • others

Added to bookmarks

Bookmarks list

Bookmark has been removed

Bookmarks list

You can't add any more bookmarks

By registering as a member, you can increase the number of bookmarks you can save and organize them with labels.

Free membership registration